(P):y=x2 và đg thẳng (d):y-(m-1)+m+4
tìm m để (P) cắt (d) tại 2 điểm nằm về 2 phía của trục tung
Cho parabol (P): y = x 2 và đường thẳng d: y = (m + 2)x – m – 1. Tìm m để d cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung
A. m < −1
B. m < −2
C. m > −1
D. −2 < m < −1
Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1
↔ x 2 − (m + 2)x + m + 1 = 0 (1)
(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0
↔ m < −1
Vậy m < −1
Đáp án: A
cho (P) y=x2 và (d) y=(m -1)x + m + 4
tìm m để (P) cắt (d) tại 2 điểm nằm về 2 phía của trục tung
Phương trình hoành độ giao điểm của (P) và (d) là: x2=(m-1)x+m+4
<=>x2-(m-1)x-m-4=0
\(\Delta=\left[-\left(m-1\right)\right]^2-4.\left(-m-4\right)=m^2-2m+1+4m+16\)
\(=m^2+2m+17=\left(m+1\right)^2+16>0\)
=>(P) luôn cắt (d) tại 2 điểm phân biệt
Theo định lí viet ta có: \(x_1.x_2=-m-4\)
Để (P) cắt (d) tại 2 điểm nằm về 2 phía trục tung thì hai nghiệm x1 và x2 phải trái dấu
=>\(x_1.x_2=-m-4<0\Leftrightarrow m>-4\)
Vậy m>-4 thì ...................
cho parapol (P): y=x2 và đường thẳng (d): y=2x-m+9. tìm m để đường thẳng (d) cắt parapol (P) tại hai điểm nằm về hai phía của trục tung
Phương trình hoành độ giao điểm:
\(x^2=2x-m+9\Leftrightarrow x^2-2x+m-9=0\) (1)
(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung
\(\Leftrightarrow\) (1) có 2 nghiệm pb trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow m-9< 0\Rightarrow m< 9\)
cho Parabol (P): y=x2 và đường thẳng (d): y=2x-m+9.Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung
Vì đường thẳng (d) cắt (P) tại hai điểm nằm về phía của trục tung nên phương trình sẽ có 2 nghiệm trái dấu
PT có 2 nghiệm trái dấu thì \(\left\{{}\begin{matrix}\Delta'>0\\P< 0\end{matrix}\right.\)
PT hoành độ giao điểm giữa ( P ) và ( d ) là \(x^2-2x+m-9=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=b'^2-ac=\left(-1\right)^2-1.\left(m-9\right)>0\\P=m-9< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-m+10>0\\m-9< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}m< 10\\m< 9\end{matrix}\right.\\ \Leftrightarrow m< 9\)
Vậy m < 9 thì đường thẳng (d) cắt (P) tại hai điểm nằm về phía của trục tung
Cho Parabol (P): y=x2 và đường thẳng (d): y=(m-1)x+m+4. Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt nằm về 2 phía của trục tung
Xét phương trình hoành độ giao điểm
\(x^2=\left(m-1\right)x+m+4\Leftrightarrow x^2-\left(m-1\right)x-m-4=0\text{ }\left(\text{*}\right)\)
để d cắt P tại hai điểm phân biệt nằm ở hai phía của trục tung thì phương trình (*) có hai nghiệm trái dấu
khi đó điều kiện \(\Leftrightarrow-m-4< 0\Leftrightarrow m>-4\)
- Xét pt hoành độ gd....:
x2-(m-1)x-m-4=0 (1)
- để (P) cắt (d) tại 2 đm nằm về 2 phía của trục tung thì pt(1) có 2 nghiệm trái dấu nhau
- \(\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-4\left(-m-4\right)>0\\P=x_1x_2=-m-4< 0\Leftrightarrow m>-4\end{matrix}\right.\)
Vậy với m>-4 thì ....
Cho parabol (P): y= x2 và (d): y= 2( m-1)x + m
a) Tìm m để (d) cắt (P) tại một điểm có hoành độ bằng 2.
b) Tìm các giá trị của m để (d) cắt (P) tại hai điểm nằm về hai phía của trục tung có hoành độ lần lượt là x1; x2 sao cho x12 + 2 (m-1)x2=6
a: f(2)=2^2=4
thay x=2 và y=4 vào (d), ta được:
4(m-1)+m=4
=>5m-4=4
=>m=8/5
b: PTHĐGĐ là;
x^2-2(m-1)x-m=0
Để (P) cắt (d) tại hai điểm nằm về hai phía so với trục tung thì -m<0
=>m>0
x1^2+2(m-1)x2=6
=>x1^2+x2(x1+x2)=6
=>x1^2+x2^2+x1x2=6
=>(x1+x2)^2-x1x2=6
=>(2m-2)^2-(-m)-6=0
=>4m^2-8m+4+m-6=0
=>m=2(nhận) hoặc m=-1/4(loại)
cho đường thẳng (d) : y=2x+m và parabol (P) : y=x^2 . Tìm m để (d) cắt (P) tại hai điểm nằm về hai phía của trục tung
Pt hoành độ giao điểm:
\(x^2=2x+m\Leftrightarrow x^2-2x-m=0\) (1)
(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow-m< 0\Rightarrow m>0\)
1) cho hàm số y=2x+b. Tìm b để hàm số cắt trục hoành tại điểm có hoành độ bằng 3.
2) Cho Parabol (P): y=x2 và đường thẳng d: y=(m-1)x+m-4. Tìm m để d cắt (P) tại 2 điểm phân biệt nằm về 2 phía của trục tung.
1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0)
<=> \(0=6+b\Leftrightarrow b=-6\)
2, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m-1\right)x-m+4=0\)
Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay
\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)
cho parabol (P):y=x\(^2\) và đường thẳng (d):y=2x-m+3 tìm m để (P) và (d) cắt nhau tại hai điểm nằm về hai phía của trục tung
PTHĐGĐ là:
x^2-2x+m-3=0
Để (P) cắt (d) hai điểm phân biệt nằm về hai phía của trục tung thì m-3<0
=>m<3
Cho đường thẳng d: y = 2x − 5 và parabol (P): y = ( m – 1 ) x 2 (m ≠ 0) . Tìm m để d và (P) cắt nhau tại hai điểm A và B phân biệt và cùng nằm về một phía đối với trục tung.
A. m > 1
B. - 2 3 < m < 1
C. 2 3 < m < 1
D. m < - 2 3