Những câu hỏi liên quan
HT
Xem chi tiết
HT
Xem chi tiết
VT
Xem chi tiết
TK
30 tháng 10 2019 lúc 22:12

gải phương trình \(\sqrt[3]{x}-3\sqrt[3]{x}=20\)

Bình luận (0)
 Khách vãng lai đã xóa
TK
30 tháng 10 2019 lúc 22:17

gải phương trình\(x\sqrt[]{\frac{1}{x}}-2x\sqrt[3]{x}=20\)

Bình luận (0)
 Khách vãng lai đã xóa
LS
Xem chi tiết
H24
Xem chi tiết
AN
20 tháng 6 2017 lúc 10:53

Bài này giải nhiều rồi. Thôi m trình bày thêm 1 lần nữa vậy. Lần sau tìm câu hỏi tương tự nha b.

Ta có:

\(A=\sqrt{4+\sqrt{4+\sqrt{4....}}}\) vô số dấu căn 

\(\Leftrightarrow A^2=4+\sqrt{4+\sqrt{4+\sqrt{4....}}}\)

\(\Leftrightarrow A^2-A-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}A=\frac{1-\sqrt{17}}{2}\left(l\right)\\A=\frac{1+\sqrt{17}}{2}=2,56< 3\end{cases}}\)

Từ đây ta có \(\sqrt{4+\sqrt{4+\sqrt{4....}}}< 3\)

Bình luận (0)
H24
20 tháng 6 2017 lúc 16:42

mỗi lần mình đều xem hết danh sách câu hỏi tương tự mà không thấy.

Cảm ơn bạn nha!

Bình luận (0)
H24
20 tháng 6 2017 lúc 16:50

mà tại sao a2 - a - 4 =0

99 dấu căn của 4 trừ 100 dấu căn của 4 sao = 0?

Bình luận (0)
XG
Xem chi tiết
DQ
Xem chi tiết
TC
Xem chi tiết
H24
9 tháng 9 2017 lúc 15:23

Đặt \(a=\sqrt{2+\sqrt{2+...+\sqrt{2}}}\)(có n dấu căn )

\(\Rightarrow a^2=2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}\)(có n-1 dấu căn)

\(\Rightarrow\sqrt{2+\sqrt{2+...+\sqrt{2}}}=a^2-2\)(có n-1 dấu căn)

Ta có \(A=\frac{2-\sqrt{2+\sqrt{2+...+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)(ở tử có n dấu căn : ở mẩu có n-1 dấu căn )

\(A=\frac{2-a}{2-\left(a^2-2\right)}=\frac{2-a}{4-a^2}=\frac{1}{a+2}\)

Dễ thấy \(\sqrt{2}a< \sqrt{2+\sqrt{2+...+\sqrt{2+2}}}\)(có n dấu căn)

            \(1,4< a< 2\)

Suy ra \(3,4< a+2< 4\)

\(\frac{1}{3,4}>\frac{1}{a+2}>\frac{1}{4}\)

\(\frac{3}{10}>\frac{1}{a+2}>\frac{1}{4}\)hay\(\frac{1}{4}< A< \frac{3}{10}\)(1)

Từ (1) suy ra ĐPCM

Bình luận (0)
TD
Xem chi tiết
H24
30 tháng 6 2019 lúc 18:17

Em thử nhé, không chắc đâu ak. Nhất là chỗ "thực hiện n lần như vậy" em ko rõ là thực hiện n hay là n - 1 lần nữa ... Mong là đúng ạ.

Gọi biểu thức trên là A

Đặt \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}=a\left(\text{n dấu căn }\right)\)

Suy ra \(a^2-2=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\left(\text{n - 1 dấu căn }\right)\)

Suy ra \(A=\frac{2-a}{2-\left(a^2-2\right)}=\frac{2-a}{4-a^2}=\frac{2-a}{\left(2-a\right)\left(2+a\right)}=\frac{1}{2+a}\)

Ta cần chứng minh \(\frac{1}{2+a}>\frac{1}{4}\Leftrightarrow2+a< 4\Leftrightarrow a< 2\)

Thật vậy,ta có: \(a=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}\)

\(< \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}}\)

\(=\sqrt{2+\sqrt{4}}=\sqrt{4}=2\) (thực hiện n lần như vậy)

Suy ra đpcm.

Bình luận (0)