Chương I - Căn bậc hai. Căn bậc ba

TD

CMR \(\dfrac{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}}{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}}>\frac{1}{4}\)

Trên tử n dấu căn

Dưới mẫu n-1 dấu căn

H24
30 tháng 6 2019 lúc 18:17

Em thử nhé, không chắc đâu ak. Nhất là chỗ "thực hiện n lần như vậy" em ko rõ là thực hiện n hay là n - 1 lần nữa ... Mong là đúng ạ.

Gọi biểu thức trên là A

Đặt \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}=a\left(\text{n dấu căn }\right)\)

Suy ra \(a^2-2=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\left(\text{n - 1 dấu căn }\right)\)

Suy ra \(A=\frac{2-a}{2-\left(a^2-2\right)}=\frac{2-a}{4-a^2}=\frac{2-a}{\left(2-a\right)\left(2+a\right)}=\frac{1}{2+a}\)

Ta cần chứng minh \(\frac{1}{2+a}>\frac{1}{4}\Leftrightarrow2+a< 4\Leftrightarrow a< 2\)

Thật vậy,ta có: \(a=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}\)

\(< \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}}\)

\(=\sqrt{2+\sqrt{4}}=\sqrt{4}=2\) (thực hiện n lần như vậy)

Suy ra đpcm.

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
LG
Xem chi tiết
DN
Xem chi tiết
NJ
Xem chi tiết
HT
Xem chi tiết
MK
Xem chi tiết
TD
Xem chi tiết
PM
Xem chi tiết
TM
Xem chi tiết