Cho \(A=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}\) (2017 dấu căn bậc 2)
Chứng tỏ: A < 5
Tính \(A=\frac{1}{2.\sqrt{1}+1.\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+....+\frac{1}{100.\sqrt{99}+99.\sqrt{100}}\)
Tìm x biết:
\(\sqrt{3x^2+16}+\sqrt{4x^2+1}+\sqrt{6x^2+9}=8-x^{2016}\)
(\(\sqrt{ }\)là dấu căn bậc hai)
Cho \(A=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}\) (2017 dấu căn bậc 2)
Chứng minh rằng: \(A< 5\)
Help me!
Biến đổi đễ mẫu không còn chứa căn bậc hai
a) \(\frac{21}{\sqrt{14}}\)
b)\(\frac{3}{\sqrt{2}}+\frac{\sqrt{2}}{3}\)
c) \(2\sqrt{5}-3\sqrt{80}-4\sqrt{500}+\frac{20}{\sqrt{5}}\)
SO SÁNH :
\(\sqrt{16}+\sqrt{4}+\sqrt{10}+\sqrt{10^2}\)với\(\sqrt{100}+\sqrt{100}+\sqrt{25}\)\(+\sqrt{1000}\)
A=\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+\sqrt{20}}}}}\)( 2017 dấu căn bậc hai )
CM : A< 5
Tính giá trị
a, 7.\(\sqrt{0,36}\)+ 5,4
b, 0,5.\(\sqrt{100}\)- \(\sqrt{\frac{4}{25}}\)
c,\(\sqrt{49}\)2 - \(\sqrt{2500}\)+ ( \(\sqrt{64}\)) 2
d, \(\sqrt{64}\)+ 2.\(\sqrt{\left(-3\right)}\)2 - 7. \(\sqrt{1,69}\)+ 3.\(\sqrt{\frac{25}{16}}\): ( 5.\(\sqrt{\frac{2}{3}}\)) 2
mọi người giúp mình nhé, cái số đầu tiên của phần c là căn bậc hai của 49 mũ 2 nha!!! Thanks mọi người nhìu
Cho \(A=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}\); \(B=\sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24+...\sqrt[3]{24}}}}\)
Mỗi số đều có 2005 dấu căn. Tìm [A+B]?