\(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + .... + \(\dfrac{1}{99.101}\)
tiếp help A=\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+.....+\(\dfrac{1}{99.101}\) help me :)
\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\left(\dfrac{100}{101}\right)=\dfrac{50}{101}\)
\(A=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}\)
= 1/2 . (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ...+ 1/99 + 1/101)
= 1/2 . (1/1 - 1/101)
= 1/2 . 100/101
= 50/101
tính tổng: A= \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\) B= \(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{3.7}+...+\dfrac{5}{99.101}\)
C= \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\) D= \(\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\) E= \(\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)
A=2.(1/1.3 + 1/3.5 + 1/5.7 +.......+1/99.101)
=2.(1/1 + 1/3 + 1/5 + 1/5 + 1/7 +...+1/99 + 1/101)
=2.(1-1/101)
=2.(101/101-1/101)
=2.100/101
200/101
B=2.(1/1.3+1/3.5+1/3.1+....+1/99.101)
=2.(1/1+1/3+1/3+1/5+1/3+1/7+....+1/99+1/101)
=2.(1/1+1/101)
=2.(101/101+1/101)
=2.102/101
=204/101
C=1/2+1/3+1/3+1/4+....+1/99+1/100
=1/2+1/100
=50/100+1/100
=51/100
1/.\(\dfrac{1}{1}.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}\)
2/.\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{10100}\)
3/.A = \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
4/.A = \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
tính bằng cách thuận tiện nhất ( làm nhanh trước 5h nha , nếu ai làm được thì cho 100 tick , thật đó và trình bày cách diễn giải nha )
2/ = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +......+\(\dfrac{1}{100.101}\)
= 1-\(\dfrac{1}{2}\) +\(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)+.........+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\)
=1-\(\dfrac{1}{101}\)=...........
mk làm vậy thôi nha
thông cảm
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{4.5}\)=\(1-\dfrac{1}{2}+....+\dfrac{1}{4}-\dfrac{1}{5}\)
=1-\(\dfrac{1}{5}=\dfrac{4}{5}\)
tương tự
B= \(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) +\(\dfrac{2}{5.7}\) +...+ \(\dfrac{2}{97.99}\) + \(\dfrac{2}{99.101}\)
\(B=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\\ B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\\ B=\dfrac{1}{1}-\dfrac{1}{101}\\ B=\dfrac{101}{101}-\dfrac{1}{101}\\ B=\dfrac{100}{101}\)
tính tổng A=\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+...+\(\dfrac{2}{99.101}\)
`A=2/[1.3]+2/[3.5]+2/[5.7]+.....+2/[99.101]`
`A=1-1/3+1/3-1/5+1/5-1/7+......+1/99-1/101`
`A=1-1/101=101-1/101=100/101`
A=2/1.3+2/3.5+2/5.7+...+2/99.101
= 1/1 - 1/3 +1/3 - 1/5 +.... +1/99 - 1/101
= 1-1/101
=101/101-1/101
=100/101
\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+...+\dfrac{4}{99.101}\)
tính hợp lý:
\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+...+\dfrac{4}{99.101}\\ =\dfrac{4}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =2.\left(1-\dfrac{1}{101}\right)\\ =2.\dfrac{100}{101}\\ =\dfrac{200}{101}\)
`4/1.3+4/3.5+4/5.7+...+4/99.101`
`=2(2/1.3+2/3.5+2/5.7+...+2/99.101)`
`=2(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)`
`=2(1-1/101)`
`=2. 100/101`
`=200/101`
B=\(\dfrac{-1}{3}\)+ \(\dfrac{-1}{3.5}\)+ \(\dfrac{-1}{5.7}\)+ \(\dfrac{-1}{7.9}\) +... + \(\dfrac{-1}{99.101}\)
\(B=-\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{-1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{100}{101}=-\dfrac{50}{101}\)
a , A= \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + ... + \(\dfrac{1}{99.101}\)_ \(\dfrac{1}{101}\)
Tính A
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}-\dfrac{1}{101}\right)-\dfrac{1}{101}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{101}\right)-\dfrac{1}{101}\)
\(A=\dfrac{1}{2}.\left(\dfrac{100}{101}\right)-\dfrac{1}{101}\)
\(A=\dfrac{50}{101}-\dfrac{1}{101}=\dfrac{49}{101}\)
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{99.101}-\dfrac{1}{101}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)-\dfrac{1}{101}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)-\dfrac{1}{101}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)-\dfrac{1}{101}\)
\(=\dfrac{1}{2}.\dfrac{100}{101}-\dfrac{1}{101}=\dfrac{50}{101}-\dfrac{1}{101}=\dfrac{49}{101}\)
Vậy...
Giải:
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}-\dfrac{1}{101}\)
\(\Leftrightarrow A=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)-\dfrac{1}{101}\)
\(\Leftrightarrow A=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{101}\right)-\dfrac{1}{101}\)
\(\Leftrightarrow A=\dfrac{1}{2}.\dfrac{100}{101}-\dfrac{1}{101}\)
\(\Leftrightarrow A=\dfrac{50}{101}-\dfrac{1}{101}=\dfrac{49}{101}\)
Vậy \(A=\dfrac{49}{101}\)
Chúc bạn học tốt!
1) Tính
a)\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
b)\(\dfrac{1}{4}+\dfrac{1}{32}+\dfrac{1}{96}+\dfrac{1}{192}\)(Điều kiện: không quy đồng và máy tính bỏ túi)
a)\(\dfrac{1}{2}\).(\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+........+\(\dfrac{2}{99.101}\))
=\(\dfrac{1}{2}\).(1-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{5}\)+........+\(\dfrac{1}{99}\)-\(\dfrac{1}{101}\))
=\(\dfrac{1}{2}\).(1-\(\dfrac{1}{101}\))
=\(\dfrac{1}{2}\).\(\dfrac{100}{101}\)
=\(\dfrac{100}{202}\)=\(\dfrac{50}{101}\)
a) Đặt \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{99.101}\) = A
Ta có:
A = \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{99.101}\)
\(\Rightarrow\) 2A = 2\(\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{99.101}\right)\)
\(\Rightarrow\) 2A = \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{99.101}\)
\(\Rightarrow\) 2A = \(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{99}-\dfrac{1}{101}\)
\(\Rightarrow\) 2A = 1 - \(\dfrac{1}{101}\) = \(\dfrac{100}{101}\)
\(\Rightarrow\) A = \(\dfrac{100}{101}\) : 2