3 . ( 2x - 1 ) . ( 3x + 1 ) - ( 2x + 3 ) . ( 4x - 1 ) = ( 4x - 6 )
Tìm x:
1) -3.(1-2x) - 4.(1+3x) = -5x + 5
2) 3.(2x - 5) - 6.(1 - 4x) = -3x + 7
3) (1 - 3x) - 2.(3x - 6) = -4x - 5
4) x.(4x - 3) - 2x.(2x - 1) = 5x - 7
5) 3x.(2x - 1) - 6x.(x + 2) = -3x + 4
6) (1 - 2x).3 - 4.(6x - 1) = 7x - 5
7) 6x - 3.(1 - 4x) - 5.(x + 1) = 2x + 7
8) 6.(1 - 3x) - 3.(2x + 5) = -10x + 7
9) 3x.(1 - 2x) + 6x^2 - 7x = 8.(1 - 2x) - 9
10) 2x.(1 + 3x) - 3x.(4 + 2x) = 3x - 4
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
Bài 2 Tìm x biết 1, (2x-2).(3x+1)-(3x-2).(2x-3)=5 2,(1-3x).(3x-5)-(2x-4)(2-3x)=x-6 3,(2x-1).(4x^2+2x+1)-(2x+1)(4x^2-2x+1)=5x+6 Giúp tớ với
P)(9-x)(x^2+2x-3) n)(-x+3)(x^2+x+1) O)(-6x+1/2)(x^2-4x+2) q)(6x+1)(x^2-2x-3) r)(2x+1)(-x^2-3x+1) U)(2x-3)(-x^2+x+6) s)(-4x+5)(x^2+3x-2) V)(-1/2x+3)(2x+6-4x^3)
p) \(\left(9-x\right)\left(x^2+2x-3\right)\)
\(=9\left(x^2+2x-3\right)-x\left(x^2+2x-3\right)\)
\(=9x^2+18x-27-x^3-2x^2+3x\)
\(=-x^3+7x^2+21x-27\)
n) \(\left(-x+3\right)\left(x^2+x+1\right)\)
\(=-x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)
\(=-x^3-x^2-x+3x^2+3x+3\)
\(=-x^2+2x^2+2x+3\)
o) \(\left(-6x+\dfrac{1}{2}\right)\left(x^2-4x+2\right)\)
\(=-6x\left(x^2-4x+2\right)+\dfrac{1}{2}\left(x^2-4x+2\right)\)
\(=-6x^3+24x^2-12x+\dfrac{1}{2}x^2-2x+1\)
\(=-6x^3+\dfrac{49}{2}x^2-14x+1\)
q) \(\left(6x+1\right)\left(x^2-2x-3\right)\)
\(=6x\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)
\(=6x^3-12x^2-18x+x^2-2x-3\)
\(=6x^3-11x^2-20x-3\)
r) \(\left(2x+1\right)\left(-x^2-3x+1\right)\)
\(=2x\left(-x^2-3x+1\right)+\left(-x^2-3x+1\right)\)
\(=-2x^3-6x^2+2x-x^2-3x+1\)
\(=-2x^3-7x^2-x+1\)
u) \(\left(2x-3\right)\left(-x^2+x+6\right)\)
\(=2x\left(-x^2+x+6\right)-3\left(-x^2+x+6\right)\)
\(=-2x^3+2x^2+12x+3x^2-3x-18\)
\(=-2x^3+5x^2+9x-18\)
s) \(\left(-4x+5\right)\left(x^2+3x-2\right)\)
\(=-4x\left(x^2+3x-2\right)+5\left(x^2+3x-2\right)\)
\(=-4x^3-12x^2+8x+5x^2+15x-10\)
\(=-4x^3-7x^2+23x-10\)
v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4x^3\right)\)
\(=-\dfrac{1}{2}x\left(2x+6-4x^3\right)+3\left(2x+6-4x^3\right)\)
\(=-x^2-3+2x^4+6x+18-12x^3\)
\(=2x^4-12x^3-x^2+6x+15\)
p: (-x+9)(x^2+2x-3)
=-x^3-2x^2+3x+9x^2+18x-27
=-x^3+7x^2+21x-27
n: (-x+3)(x^2+x+1)
=-x^3-x^2-x+3x^2+3x+3
=-x^3+2x^2+2x+3
o: (-6x+1/2)(x^2-4x+2)
=-6x^3+24x^2-12x+1/2x^2-2x+1
=-64x^3+49/2x^2-14x+1
q: (6x+1)(x^2-2x-3)
=6x^3-12x^2-18x+x^2-2x-3
=6x^3-11x^2-20x-3
r: (2x+1)(-x^2-3x+1)
=-2x^3-6x^2+2x-x^2-3x+1
=-2x^3-7x^2-x+1
u: =-2x^3+2x^2+12x+3x^2-3x-18
=-2x^3+5x^2+9x-18
s: =-4x^3-12x^2+8x+5x^2+15x-10
=-4x^3-7x^2+23x-10
V)(-1/2x+3)(2x+6-4c^3) F)(2x-5)(x^2-x+3) W)(3x+1)(x^2-2x-5) X)(6x-3)(x^2+x-1) Y)(5x-2)(3x+1-x^2) Z)(3/4x+1)(4x^2+4x+4)
v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4c^3\right)\)
\(=-\dfrac{1}{2}\left(2x+6-4c^3\right)+3\left(2x+6-4c^3\right)\)
\(=-x^2-3x+2c^3x+6x+18-12c^3\)
\(=-x^2+3x+2c^3x+18-12c^3\)
f) \(\left(2x-5\right)\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)-5\left(x^2-x+3\right)\)
\(=2x^3-2x^2+6x-5x^2+5x-15\)
\(=2x^3-7x^2+11x-15\)
w) \(\left(3x+1\right)\left(x^2-2x-5\right)\)
\(=3x\left(x^2-2x-5\right)+\left(x^2-2x-5\right)\)
\(=3x^3-6x^2-15x+x^2-2x-5\)
\(=3x^3-5x^2-17x-5\)
x) \(\left(6x-3\right)\left(x^2+x-1\right)\)
\(=6x\left(x^2+x-1\right)-3\left(x^2+x-1\right)\)
\(=6x^3+6x^2-6x-3x^2-3x+3\)
\(=6x^3+3x^2-9x+3\)
y) \(\left(5x-2\right)\left(3x+1-x^2\right)\)
\(=5x\left(3x+1-x^2\right)-2\left(3x+1-x^2\right)\)
\(=15x^2+5x-5x^3-6x-2+2x^2\)
\(=-5x^3+17x^2-x-2\)
z) \(\left(\dfrac{3}{4}x+1\right)\left(4x^2+4x+4\right)\)
\(=\dfrac{3}{4}x\left(4x^2+4x+4\right)+\left(4x^2+4x+4\right)\)
\(=3x^3+3x^2+3x+4x^2+4x+4\)
\(=3x^3+7x^2+7x+4\)
f: =2x^3-2x^2+6x-5x^2+5x-15
=2x^3-7x^2+11x-15
w: =3x^3-6x^2-15x+x^2-2x-5
=3x^3-5x^2-17x-5
x: =6x^3+6x^2-6x-3x^2-3x+3
=6x^3+3x^2-9x+3
y: =(5x-2)(-x^2+3x+1)
=-5x^3+15x^2+5x+2x^2-6x-2
=-5x^3+17x^2-x-2
z: =3x^3+3x^2+3x+4x^2+4x+4
=3x^3+7x^2+7x+4
Tìm x
a) 3x(4x - 3) - 2x(5 - 6x) = 0
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
d) 3x (x + 1) - 5x(3 - x) + 6(x^2 + 2x + 3) = 0
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
b) 5(2x-3)+4x(x-2)+2x(3-2x)=0
\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
\(\Leftrightarrow x=\dfrac{15}{8}\)
vậy x=\(\dfrac{15}{8}\)
c)3x(2-x)+2x(x-1)=5x(x+3)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)
\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)
giải bất phương trình sau và biểu diễn tập nghiệm trên trục số
(3x-1)-2(2x+1)>2x-3,
1-2x+3(x+1)<3x+5
3-2x+2(-1-2x)>4x-6
4x+2-(2-4x)<2x+1
3x-(2x+1) > 2-3x
(2x-1)-3(1+5x) > 1-5x
3-4(-x-3) < 3x+4
(-1-3x)+(3x-4) > 4x-1
3(1-x)-4(2x+3) > 3-7x
6(2x-6)-3(-1-3x) > 2x+5
3x-4(-1-x) < 2x+5
3x-4(3x+2) < 5x-5
mai phải nộp mong ae giúp
tìm x,y
a) ( 3x-2)^3 - (3x - 2) ( 9x^2 + 6x +4) = 6( 3x+5)(5 - 3x )
b) ( 2x - 1)( 4x^2 - 4x +1) - (2x+ 1)^3+ 3(2x+5)(2x - 5)= -5
Bài 1: Thực hiện phép tính
a) (3x-1)(9x2+3x+1)-4x(x-5)
b) (7x+2)(3-4x)-(x+3)(x2-3x+9)
c) (4x+3)(4x-3)-(2-x)(4+2x+x2)
d) (3x-8)(-5x+6)-(4x+1)(3x-2)
e) (3x-6)4x-2x(3x+5)-4x2
f) (5x-6)(6x-5)-x(3x+10)
Bài 2 : Tính
a) x(x+3)-x2=6
b) 2x(x-5)+x(-2x-1)=6
c) x (x+5)-(x+1)(x-2)=7
d)(3x+4)(6x-3)-(2x+1)(9x-2)=10
1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)
\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)
\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)
\(=27x^3-4x^2+20x-1\)
b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)
\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)
\(=13x-28x^2-21-x^3\)
c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)
\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)
\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)
\(=16x^2-17+x^3\)
d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)
\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)
\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)
\(=-27x^2+63x-46\)
e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)
\(=12x^2-24x-6x^2-10x-4x^2\)
\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)
\(=2x^2-34x\)
f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)
\(=30x^2-25x-36x+30-3x^2-10x\)
\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)
\(=27x^2-71x+30\)
2) a)\(x\left(x+3\right)-x^2=6\)
\(\Rightarrow x^2+3x-x^2=6\)
\(\Rightarrow\left(x^2-x^2\right)+3x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Vậy x=2
b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)
\(\Rightarrow2x^2-10x-2x^2-x=6\)
\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)
\(\Rightarrow-11x=6\)
\(\Rightarrow x=-\dfrac{6}{11}\)
\(\)Vậy \(x=-\dfrac{6}{11}\)
c) x(x+5)-(x+1)(x-2)=7
\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)
\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)
\(\Rightarrow6x=5\)
\(\Rightarrow x=\dfrac{5}{6}\)
Vậy x=\(\dfrac{5}{6}\)
d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)
\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)
\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)
\(\Rightarrow10x-10=10\)
\(\Rightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy x=2
Tìm x :
3. ( 2x - 1 ) . ( 3x +1 ) - ( 2x + 3 ) . ( 4x - 1 ) = 4x - 6