cho M=\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
với x>= 4
a rút gọn M
b tìm x để M=4
B3: Cho:
\(M=\dfrac{x-7}{x-4\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-3}\) với \(x\ge0,x\ne1,x\ne9\)
a, Rút gọn M
b, Tìm x để M \(>\dfrac{3}{4}\)
a) Ta có: \(M=\dfrac{x-7}{x-4\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x-7+\sqrt{x}-3-\sqrt{x}+1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\)
b) Để \(M>\dfrac{3}{4}\) thì \(M-\dfrac{3}{4}>0\)
\(\Leftrightarrow\dfrac{\sqrt{x}+3}{\sqrt{x}-1}-\dfrac{3}{4}>0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}+12-3\sqrt{x}+3}{4\left(\sqrt{x}-1\right)}>0\)
\(\Leftrightarrow\sqrt{x}-1>0\)
\(\Leftrightarrow x>1\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>1\\x\ne9\end{matrix}\right.\)
1) Cho biểu thứ M= \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\) - \(\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\) ( với x>0, x≠4)
a) rút gọn biểu thức M
b) Tính giá trị của M khi x= 3+2\(\sqrt{2}\)
c) Tìm giá trị của x để M>0
a: \(M=\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b: Khi \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\) thì
\(M=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}-2}{\sqrt{\left(\sqrt{2}+1\right)^2}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)
\(=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\left(\sqrt{2}-1\right)^2=3-2\sqrt{2}\)
c: M>0
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\)
mà \(\sqrt{x}>0\)
nên \(\sqrt{x}-2>0\)
=>\(\sqrt{x}>2\)
=>x>4
Cho B=\(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}-\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
a)Rút gọn B
b)Tìm m để với mọi giá trị x>9 ta có \(m\left(\sqrt{x}-3\right)B>x+1\)
a: \(=\dfrac{4x-8\sqrt{x}+8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\sqrt{x}\left(3\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}=\dfrac{-4x\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
b: \(m\left(\sqrt{x}-3\right)\cdot B>x+1\)
=>\(-4xm\left(3\sqrt{x}-2\right)>\left(\sqrt{x}+2\right)\cdot\left(x+1\right)\)
=>\(-12m\cdot x\sqrt{x}+8xm>x\sqrt{x}+2x+\sqrt{x}+2\)
=>\(x\sqrt{x}\left(-12m-1\right)+x\left(8m-2\right)-\sqrt{x}-2>0\)
Để BPT luôn đúng thì m<-0,3
cho M=\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)( x>4)
rút gọn M
Cho hai biểu thức A=\(\dfrac{2+\sqrt{x}}{\sqrt{x}}\) và B=\(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\) với x>0
a. rút gọn biểu thức B
c. tìm m để A/B>4/3
a: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)
c: A/B>4/3
=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}>\dfrac{4}{3}\)
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{4}{3}>0\)
=>\(\dfrac{3\left(\sqrt{x}+1\right)-4\sqrt{x}}{3\sqrt{x}}>0\)
=>\(3\left(\sqrt{x}+1\right)-4\sqrt{x}>0\)
=>\(3\sqrt{x}+3-4\sqrt{x}>0\)
=>\(-\sqrt{x}>-3\)
=>\(\sqrt{x}< 3\)
=>0<=x<9
Kết hợp ĐKXĐ, ta được: 0<x<9
Câu 9: Cho biểu thức \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x-2}}+\dfrac{\sqrt{x}}{\sqrt{x+2}}\right)\) : \(\dfrac{\sqrt{4x}}{x-4}\)
a. Với giá trị nào của x thì giá trị của M được xác định ?
b. Rút gọn M. Tìm x để M > 3
Cho biểu thức M=\(\)\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}vớix>2,x\ne4\)
a,Rút gọn biểu thức M
b,Tính giá trị M khi x=3+\(2\sqrt{2}\)
c,Tìm giá trị của x để M>0
a, \(\Rightarrow M=\dfrac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Rightarrow M=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Rightarrow M=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Rightarrow M=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b, \(x=3+2\sqrt{2}\Rightarrow M=\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}=\dfrac{\sqrt{2+2\sqrt{2}.1+1}-2}{\sqrt{2+2\sqrt{2}.1+1}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{2-2\sqrt{2}+1}{2-1}=3-2\sqrt{2}\)
c, \(M>0\Rightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\Rightarrow x>4\)
Cho biểu thức M = \(\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}\)
a/ Rút gọn biểu thức M
b/ Tìm giá trị của x để M=2
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Rút gọn biểu thức
P= \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}vs\left(x\ge1\right)\)
a, \(M=\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}\) (ĐK : \(\forall x\in R\))
\(=\sqrt{\left(x-2\right)^2}-\sqrt{\left(x+2\right)^2}\)
* Nếu x\(\ge2\Rightarrow M=x-2-x-2=-4\)
*Nếu x<2 => M=2-x-x-2=-2x
b,Để M=2\(\ne-4\)
=>M=-2x
=>-2x=-4
=>x=2
__________________________________________________________________________________________
P=\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
* Nếu \(x\ge2\Rightarrow P=\sqrt{x-1}+1+\sqrt{x-1}-1=2\sqrt{x-1}\)
* Nếu x<2 =>P=\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
VẬY.......
Tk nha!
P=\(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm giá trị của x để P=-1
c) Tìm m để với mọi giá trị x>9 ta có m(\(\sqrt{x}-3\)). P >x+1
giúp giải câu c vs ạ
a) \(P=\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}=\dfrac{4x}{\sqrt{x}-3}\)
\(\left(x\ge0;x\ne4;9\right)\)
b)\(P=-1\Leftrightarrow4x+\sqrt{x}-3=0\Leftrightarrow\sqrt{x}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)
c) bpt đưa về dạng \(4mx>x+1\Leftrightarrow\left(4x-1\right)x>1\)
Nếu \(4m-1\le0\) thì tập nghiệm không thể chứa mọi giá trị \(x>9\); Nếu \(4m-1>0\) thì tập nghiệm bpt là \(x>\dfrac{1}{4m-1}\). Do đó bpt tm mọi \(x>9\Leftrightarrow9\ge\dfrac{1}{4m-1}\) và \(4m-1>0\). ta có \(m\ge\dfrac{5}{18}\)