Những câu hỏi liên quan
HP
Xem chi tiết
NT
20 tháng 7 2021 lúc 20:00

a) Ta có: \(M=\dfrac{x-7}{x-4\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-3}\)

\(=\dfrac{x-7+\sqrt{x}-3-\sqrt{x}+1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\)

b) Để \(M>\dfrac{3}{4}\) thì \(M-\dfrac{3}{4}>0\)

\(\Leftrightarrow\dfrac{\sqrt{x}+3}{\sqrt{x}-1}-\dfrac{3}{4}>0\)

\(\Leftrightarrow\dfrac{4\sqrt{x}+12-3\sqrt{x}+3}{4\left(\sqrt{x}-1\right)}>0\)

\(\Leftrightarrow\sqrt{x}-1>0\)

\(\Leftrightarrow x>1\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>1\\x\ne9\end{matrix}\right.\)

Bình luận (1)
LP
Xem chi tiết
NT
25 tháng 10 2023 lúc 14:15

a: \(M=\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b: Khi \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\) thì

\(M=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}-2}{\sqrt{\left(\sqrt{2}+1\right)^2}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)

\(=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\left(\sqrt{2}-1\right)^2=3-2\sqrt{2}\)

c: M>0

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\)

mà \(\sqrt{x}>0\)

nên \(\sqrt{x}-2>0\)

=>\(\sqrt{x}>2\)

=>x>4

Bình luận (0)
TN
Xem chi tiết
NT
13 tháng 1 2023 lúc 22:55

a: \(=\dfrac{4x-8\sqrt{x}+8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\sqrt{x}\left(3\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}=\dfrac{-4x\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

b: \(m\left(\sqrt{x}-3\right)\cdot B>x+1\)

=>\(-4xm\left(3\sqrt{x}-2\right)>\left(\sqrt{x}+2\right)\cdot\left(x+1\right)\)

=>\(-12m\cdot x\sqrt{x}+8xm>x\sqrt{x}+2x+\sqrt{x}+2\)

=>\(x\sqrt{x}\left(-12m-1\right)+x\left(8m-2\right)-\sqrt{x}-2>0\)

Để BPT luôn đúng thì m<-0,3

Bình luận (0)
BT
Xem chi tiết
LM
Xem chi tiết
NT
6 tháng 1 2024 lúc 18:41

a: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

c: A/B>4/3

=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}>\dfrac{4}{3}\)

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{4}{3}>0\)

=>\(\dfrac{3\left(\sqrt{x}+1\right)-4\sqrt{x}}{3\sqrt{x}}>0\)

=>\(3\left(\sqrt{x}+1\right)-4\sqrt{x}>0\)

=>\(3\sqrt{x}+3-4\sqrt{x}>0\)

=>\(-\sqrt{x}>-3\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

Kết hợp ĐKXĐ, ta được: 0<x<9

Bình luận (0)
CP
Xem chi tiết
TP
Xem chi tiết
H24
6 tháng 11 2021 lúc 20:13

a, \(\Rightarrow M=\dfrac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

 \(\Rightarrow M=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Rightarrow M=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Rightarrow M=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b, \(x=3+2\sqrt{2}\Rightarrow M=\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}=\dfrac{\sqrt{2+2\sqrt{2}.1+1}-2}{\sqrt{2+2\sqrt{2}.1+1}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{2-2\sqrt{2}+1}{2-1}=3-2\sqrt{2}\)

c, \(M>0\Rightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\Rightarrow x>4\)

Bình luận (0)
LN
Xem chi tiết
H24
13 tháng 6 2018 lúc 22:18

a, \(M=\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}\)      (ĐK : \(\forall x\in R\))

           \(=\sqrt{\left(x-2\right)^2}-\sqrt{\left(x+2\right)^2}\)

     * Nếu x\(\ge2\Rightarrow M=x-2-x-2=-4\)

     *Nếu x<2   => M=2-x-x-2=-2x

b,Để M=2\(\ne-4\)

     =>M=-2x

    =>-2x=-4

    =>x=2

__________________________________________________________________________________________

P=\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

  \(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

    \(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

     * Nếu \(x\ge2\Rightarrow P=\sqrt{x-1}+1+\sqrt{x-1}-1=2\sqrt{x-1}\)

    * Nếu x<2  =>P=\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

             VẬY.......

 Tk nha!

Bình luận (0)
HS
Xem chi tiết
NH
23 tháng 6 2021 lúc 21:59

a) \(P=\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}=\dfrac{4x}{\sqrt{x}-3}\)

\(\left(x\ge0;x\ne4;9\right)\)

b)\(P=-1\Leftrightarrow4x+\sqrt{x}-3=0\Leftrightarrow\sqrt{x}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)

c) bpt đưa về dạng \(4mx>x+1\Leftrightarrow\left(4x-1\right)x>1\)

Nếu \(4m-1\le0\) thì tập nghiệm không thể chứa mọi giá trị \(x>9\); Nếu \(4m-1>0\) thì tập nghiệm bpt là \(x>\dfrac{1}{4m-1}\). Do đó bpt tm mọi \(x>9\Leftrightarrow9\ge\dfrac{1}{4m-1}\) và \(4m-1>0\). ta có \(m\ge\dfrac{5}{18}\)

Bình luận (0)