LM

Cho hai biểu thức A=\(\dfrac{2+\sqrt{x}}{\sqrt{x}}\) và B=\(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\) với x>0

a. rút gọn biểu thức B

c. tìm m để A/B>4/3

NT
6 tháng 1 2024 lúc 18:41

a: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

c: A/B>4/3

=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}>\dfrac{4}{3}\)

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{4}{3}>0\)

=>\(\dfrac{3\left(\sqrt{x}+1\right)-4\sqrt{x}}{3\sqrt{x}}>0\)

=>\(3\left(\sqrt{x}+1\right)-4\sqrt{x}>0\)

=>\(3\sqrt{x}+3-4\sqrt{x}>0\)

=>\(-\sqrt{x}>-3\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

Kết hợp ĐKXĐ, ta được: 0<x<9

Bình luận (0)

Các câu hỏi tương tự
2S
Xem chi tiết
MB
Xem chi tiết
H24
Xem chi tiết
LP
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
NA
Xem chi tiết
KH
Xem chi tiết
LS
Xem chi tiết