Tính tổng \(C^0_{2000}+2C^1_{2000}+3C^2_{2000}+.......+2001C^{2000}_{2000}\)
\(A=C^0_{2000}+2C^1_{2000}+3C^2_{2000}+...+2001C^{2000}_{2000}\)
Rút gọn KHÔNG DÙNG ĐẠO HÀM, TÍCH PHÂN
\(\left(k+1\right)C^k_n=kC^k_n+C^k_n=\dfrac{n!k}{k!\left(n-k\right)!}+C^k_n=\dfrac{\left(n-1\right)!n}{\left(k-1\right)!\left(n-1-k+1\right)!}+C^k_n=nC^{k-1}_{n-1}+C^k_n\)
\(\Rightarrow C^0_{2000}+\sum\limits^{2000}_{k=1}\left(k+1\right)C^k_{2000}=C^0_{2000}+\sum\limits^{2000}_{k=1}\left(2000C^{k-1}_{1999}+C^k_{2000}\right)=2000\sum\limits^{2000}_{k=1}C^{k-1}_{1999}+\sum\limits^{2000}_{k=0}C^k_{2000}\)
\(=2000.2^{1999}+2^{2000}=2^{1999}.2002\)
tính tổng C02000 + 2C12000 + 3C22000 + ...+ 2001C20002000
A 1000.21000 B 2000. 22000 C 2000.22000 D 1001.21000
giải hệ phưng trình sử dụng bất đẳng thức.
\(\hept{\begin{cases}x_1+x_2+.....+x_{2000}=a\\x_1^2+x_2^2+......+x^2_{2000}=a^2\\x_1^{2000}+x_2^{2000}+x^{2000}_{2000}=a^{2000}\end{cases}}\)
a, tính tổng sau S=\(C^1_{14}-2C^2_{14}+3C^2_{14}-......-14C^{14}_{14}\) b, S=\(9.2^8C^0_9-8.2^7C^1_9+7.2^6C^2_9-.......+C^8_9\)
a.
Xét khai triển:
\(\left(1+x\right)^{14}=C_{14}^0+C_{14}^1x+...+C_{14}^{14}x^{14}\)
Đạo hàm 2 vế:
\(14\left(1+x\right)^{13}=C_{14}^1+2C_{14}^2x+...+14C_{14}^{14}x^{13}\)
Cho \(x=-1\) ta được:
\(0=C_{14}^1-2C_{14}^2+...-14C_{14}^{14}\)
\(\Rightarrow S=0\)
b. Xét khai triển:
\(\left(1+2x\right)^9=C_9^0+C_9^1\left(2x\right)+C_9^2\left(2x\right)^2+...+C_9^9\left(2x\right)^9\)
\(=C_9^9+C_9^8\left(2x\right)+C_9^7\left(2x\right)^2+...+C_9^0\left(2x\right)^9\)
Đạo hàm 2 vế:
\(18\left(1+2x\right)^8=2C_9^8+2.2^3C_9^7x+3.2^4C_9^6x^2+...+9.2^9C_9^0x^8\)
\(\Rightarrow9\left(1+2x\right)^8=C_9^8+2.2^2C_9^7x+...+9.2^8C_9^0x^8\)
Cho \(x=-1\)
\(\Rightarrow9=C_9^8-2.2^2C_9^7+...+9.2^8C_9^0\)
\(\Rightarrow S=9\)
Tính tổng \(S=1C^1_{100}+2C^2_{100}+3C^3_{100}+...+100C^{100}_{100}\).
Tính tổng: \(S=n\left(C^0_{n-1}+C^1_{n-1}+C^2_{n-1}+...+C^{n-1}_{n-1}\right)\)
\(C_{n-1}^0+C_{n-1}^1+...+C_{n-1}^{n-1}=2^{n-1}\)
\(\Rightarrow S=n.2^{n-1}\)
Tính GTBT:
\(S=C^0_{15}+C^1_{15}+C^2_{15}+...+C^{15}_{15}\)
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+C_n^1x+...+C_n^nx^n\)
Cho \(x=1\) ta được:
\(C_n^0+C_n^1+...+C_n^n=2^n\)
Bài này chỉ cần thay \(n=15\)
Tính tổng các số tự nhiên từ 1 đến 2000: 1+2+...+2000
số số hạng:
(2000-1):1+1=2000
Tổng:
(2000+1)x2000:2=2001000
= (1+2000) * (2000/2) = 100050
[(2000-1):1+1]x(2000+1)/2=2000x2001/2=4002000/2=2001000
Tính tổng: \(S=C^1_{20}+2C^2_{20}+2^2C^3_{20}+...+2^{19}C^{20}_{20}\)
Xét khai triển:
\(\left(x+1\right)^{20}=C_{20}^0+C_{20}^1x+C_{20}^2x^2+...+C_{20}^{20}x^{20}\)
Chia 2 vế cho x ta được:
\(\dfrac{\left(x+1\right)^{20}}{x}=\dfrac{1}{x}+C_{20}^1+C_{20}^2x+...+C_{20}^{20}.x^{19}\)
Thay \(x=2\)
\(\Rightarrow\dfrac{3^{20}}{2}=\dfrac{1}{2}+C_{20}^1+2C_{20}^2+2^2C_{20}^3+...+2^{19}C_{20}^{20}\)
\(\Rightarrow S=\dfrac{3^{20}-1}{2}\)
`S=C_20 ^1 + 2C_20 ^2 + 2^2 C_20 ^3 +....+2^19 C_20 ^20`
`<=>2S=2C_20 ^1+2^2 C_20 ^2 + 2^3 C_20 + .... + 2^20 C_20 ^20`
`<=>2S=C_20 ^0 +2C_20 ^1+2^2 C_20 ^2 + 2^3 C_20 + .... + 2^20 C_20 ^20 -C_20 ^0`
`<=>2S=(1+2)^20-1`
`<=>2S=3^20-1`
`<=>S=[3^20 -1]/2`