Những câu hỏi liên quan
PN
Xem chi tiết
CH
18 tháng 10 2017 lúc 10:31

Bài 1: Gọi hai số cần tìm là a và b.

Do tích ab là số nguyên tố nên một trong hai số là số 1. Số còn lại là một số nguyên tố. Coi b = 1 và a là số nguyên tố.

Khi đó tổng của hai số là a + 1.

Để a và a + 1 đều là số nguyên tố thì a = 1. Vậy hai số cần tìm là 1 và 2.

Bài 2: Ta có: 

\(\overline{ab}.\overline{cd}=\overline{ddd}\Leftrightarrow\overline{ab}.\overline{cd}=d.111=d.3.37\)

Do 37 là số nguyên tố nên hoặc ab hoặc cd phải chia hết cho 37. Ta giả sử đó là ab

Do ab là số có hai chữ số nên ab = 37 hoặc 74

TH1: \(\overline{ab}=37\Rightarrow37.\overline{cd}=d.3.37\Rightarrow\overline{cd}=3d\)

\(\Rightarrow10c=2d\Rightarrow5c=d\Rightarrow c=1;d=5\)

Ta có 37.15 = 555

TH2: \(\overline{ab}=74\Rightarrow74.\overline{cd}=d.3.37\Rightarrow2.\overline{cd}=3d\)

\(\Rightarrow20c=d\) (Loại)

Vậy ta có phép tính: 37.15 = 555

Bình luận (0)
H2
Xem chi tiết
NA
18 tháng 6 2016 lúc 9:27

http://olm.vn/hoi-dap/question/476913.html

coi link trên nha

Bình luận (0)
VT
18 tháng 6 2016 lúc 9:27

Từ đề bài, ta có: (100a+10b+c)-(100c+10b+a)= 495 và a.c=b^2.
=> 99(a-c)=495. => a-c=5 và a.c=b^2.
-Nếu a=5: => c=0=> a.c=0=b^2.
=> b=0.
-Nếu a=6: => c=1=> b^2=1.6=6.(Loại do 6 không phải là số chính phương).
-Tương tự với a=7;c=2 và a=8;c=3.(Loại).
-Nếu a=9=> c=4 =>b^2= a.c=9.4=36 =6^2.
=> b=6( Do b thuộc N).
Vậy số có 3 chữ số cần tìm là 500 và 964. 

Bình luận (1)
DT
18 tháng 6 2016 lúc 9:31

\(\overline{abc}-\overline{cba}=495\)

=>100a+10b+c-100c-10b-a=495

=>99a-99c=495

=>99.(a-c)=495

=>a-c=5

Như vậy a chỉ có thể dao động từ 5->9

Khi a=5 =>c=0 =>b=0 (nhận)

Khi a=6 =>c=1=>b=\(\sqrt{6}\)(loại)

Khi a=7 =>c=2 =>b=\(\sqrt{14}\)(loại)

Khi a=8=>c=3 =>b=\(2\sqrt{6}\)(loại)

Khi: a=9=>c=4=>b=6(nhận)

Vậy \(\overline{abc}\) là số 500 hoặc 964

Bình luận (0)
TT
Xem chi tiết
H24
6 tháng 1 2018 lúc 19:11

abc = 325

Bình luận (0)
LT
6 tháng 1 2018 lúc 19:37

abc = 325

Bình luận (0)
TT
6 tháng 1 2018 lúc 20:56
giải chi tiết mà
Bình luận (0)
NT
Xem chi tiết
PK
Xem chi tiết
H24
Xem chi tiết
KR
27 tháng 3 2023 lúc 20:43

Ta có: \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}=\dfrac{x^2}{2^2}=\dfrac{y^2}{3^2}=\dfrac{z^2}{5^2}\rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/2=y/3=z/5=(x-y+z)/(2-3+5)=4/4=1`

`-> x/2=y/3=z/5=1`

`-> x=2*1=2, y=3*1=3, z=5*1=5`

Bình luận (0)
NT
27 tháng 3 2023 lúc 20:38

=>x/2=y/3=z/5 và x-y+z=4

Áp dụng tính chất của DTSBN, ta được:

x/2=y/3=z/5=(x-y+z)/(2-3+5)=4/4=1

=>x=2; y=3; z=5

Bình luận (0)
HQ
27 tháng 3 2023 lúc 20:50

Ta có: \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

\(\Rightarrow\dfrac{x}{2}=1\Rightarrow x=2\)

     \(\dfrac{y}{3}=1\Rightarrow y=3\)

     \(\dfrac{z}{5}=1\Rightarrow z=5\)

 Vậy x =2; y =3; z =5

Bình luận (0)
H24
Xem chi tiết
NT
3 tháng 4 2023 lúc 20:07

=>\(\dfrac{10a+b}{10b+c}=\dfrac{b}{c}\)

=>10ac+bc=10b^2+bc

=>ac=b^2

=>a/b=b/c=k

=>a=bk; b=ck

=>a=ck^2; b=ck

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{c^2k^4+c^2k^2}{c^2k^2+c^2}=k^2\)

\(\dfrac{a}{c}=\dfrac{ck^2}{c}=k^2\)

=>\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)

Bình luận (0)
CT
Xem chi tiết
YN
3 tháng 2 2023 lúc 22:14

Bài 1:

a)

\(\overline{abcd}=100\overline{ab}+\overline{cd}\)

\(=100.2\overline{cd}+\overline{cd}\)

\(=201\overline{cd}\)

Mà \(201⋮67\)

\(\Rightarrow\overline{abcd}⋮67\)

b)

\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)

\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)

\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)

\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)

\(\Rightarrow\overline{bca}⋮27\)

Bài 2:

\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)

\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)

\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)

Mà \(11⋮11\)

\(\Rightarrow\overline{ab}.11.9⋮11\)

\(\Rightarrow\overline{abcd}⋮11\).

 

 

Bình luận (0)
CT
3 tháng 2 2023 lúc 19:54

Các bạn giải nhanh cho mình nhé. Thanks!

Bình luận (0)
KH
Xem chi tiết