Những câu hỏi liên quan
TM
Xem chi tiết
HC
19 tháng 1 2020 lúc 20:24

ez mà :)))

Bình luận (0)
 Khách vãng lai đã xóa
NT
19 tháng 1 2020 lúc 20:25

bạn ơi, hình như bạn nhớ nhầm rồi đấy, ko có HĐT đó đâu, mà có HĐT thức ấy nhưng a+b+c = 0  nữa cơ

Bình luận (0)
 Khách vãng lai đã xóa
HC
19 tháng 1 2020 lúc 20:33

Đặt a^2-bc=x, b^2-ac=y, c^2-ab=z

x^3+y^3+z^3>=3abc

( tự chuyển vế phân )<=> (x+y+z)(x^2+y^2+z^2-xy-yz-zx) >= 0

Ta có: (x-y)^2+(y-z)^2+(z-x)^2 >= 0   

<=> x^2+y^2+z^2-xy-yz-zx >= 0 (1)

( coi a=x, b=y, c=z )

=> a^2+b^2+c^2-ab-bc-ca >= 0

<=> (a^2-bc)+(b^2-ca)+(c^2-ab) >= 0

<=> x+y+z >= 0 (2)

Từ (1),(2) => (x+y+z)(x^2+y^2+z^2-xy-yz-zx) >= 0

=> Đpcm

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
HQ
26 tháng 6 2017 lúc 8:23

Giải:

Ta có: \(VT=a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(=VP\) (Đpcm)

Bình luận (0)
DH
26 tháng 6 2017 lúc 8:19

Ta có:

\(VP=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=a^3+ab^2+ac^2-a^2b-abc-a^2c+a^2b+b^3+bc^2-ab^2-b^2c-abc+a^2c+b^2c+c^3-abc-bc^2-ac^2\)

\(=a^3+b^3+c^3-3abc=VT\)

\(\rightarrow\) đpcm

Chúc bạn học tốt!!!

Bình luận (0)
LD
26 tháng 6 2017 lúc 8:45

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

Ta có VP: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=a^3+ab^2+ac^2-a^2b-abc-a^2c+ba^2+b^3+bc^2-ab^2-b^2c-bac+ca^2+cb^2+c^3-cab-bc^2-ac^2\)

\(=a^3+b^3+c^3-3abc\)

Vậy \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

Bình luận (0)
AN
Xem chi tiết
KB
23 tháng 9 2018 lúc 19:20

Sửa đề : CM \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Ta có : \(VT=a^3+b^3+c^3-3abc\)

\(=\left(a^3+b^3+3a^2b+3b^2a\right)+c^3-3a^2b-3b^2a-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\)

\(=\left(a+b+c\right)\left[a^2+b^2+2ab-ac-bc+c^2-3ab\right]\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=VP\)

\(\left(đpcm\right)\)

Bình luận (0)
SK
Xem chi tiết
MS
Xem chi tiết
MS
21 tháng 10 2018 lúc 12:10

@Nguyễn Thanh Hằng đọc xong xóa đii nha

Bình luận (0)
TH
Xem chi tiết
AH
30 tháng 12 2017 lúc 23:05

* Đặt tên các biểu thức theo thứ tự là A,B,C,D,E.

Câu a)

Theo hằng đẳng thức đáng nhớ ta có:

\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)

\(=(a+b+c)^3-3[ab(a+b)+bc(b+c)+ca(c+a)+2abc]\)

\(=(a+b+c)^3-3[ab(a+b+c)+bc(b+c+a)+ca(c+a+b)-abc]\)

\(=(a+b+c)^3-3[(a+b+c)(ab+bc+ac)]+3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=(a+b+c)^3-3(ab+bc+ac)(a+b+c)\)

\(=(a+b+c)[(a+b+c)^2-3(ab+bc+ac)]\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\) (*)

Do đó:

\(A=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)

Câu b)

\(x^3-y^3+z^3+3xyz=x^3+(-y)^3+z^3-3x(-y)z\)

Sử dụng kết quả (*) của câu a. Với \(a=x, b=-y, c=z\)

\(\Rightarrow x^3+(-y)^3+z^3-3x(-y)z=(x-y+z)(x^2+y^2+z^2+xy+yz-xz)\)

Mặt khác xét mẫu số:

\((x+y)^2+(y+z)^2+(x-z)^2=x^2+2xy+y^2+y^2+2yz+z^2+x^2-2xz+z^2\)

\(=2(x^2+y^2+z^2+xy+yz-xz)\)

Do đó: \(B=\frac{(x-y+z)(x^2+y^2+z^2+xy+yz-xz)}{2(x^2+y^2+z^2+xy+yz-xz)}=\frac{x-y+z}{2}\)

Câu c) Sử dụng kết quả (*) của phần a:

\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

Và mẫu số:

\((x-y)^2+(y-z)^2+(z-x)^2=2(x^2+y^2+z^2-xy-yz-xz)\)

Do đó: \(C=\frac{(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{2(x^2+y^2+z^2-xy-yz-xz)}=\frac{x+y+z}{2}\)

Bình luận (0)
AH
30 tháng 12 2017 lúc 23:17

Câu d)

Xét tử số:

\(a^2(b-c)+b^2(c-a)+c^2(a-b)\)

\(=a^2(b-c)-b^2[(b-c)+(a-b)]+c^2(a-b)\)

\(=(b-c)(a^2-b^2)-(b^2-c^2)(a-b)\)

\(=(b-c)(a-b)(a+b)-(b-c)(b+c)(a-b)\)

\(=(a-b)(b-c)[a+b-(b+c)]=(a-b)(b-c)(a-c)\) (1)

Xét mẫu số:

\(a^4(b^2-c^2)+b^4(c^2-a^2)+c^4(a^2-b^2)\)

\(=a^4(b^2-c^2)-b^4[(b^2-c^2)+(a^2-b^2)]+c^4(a^2-b^2)\)

\(=(a^4-b^4)(b^2-c^2)-(b^4-c^4)(a^2-b^2)\)

\(=(a^2-b^2)(a^2+b^2)(b^2-c^2)-(b^2-c^2)(b^2+c^2)(a^2-b^2)\)

\(=(a^2-b^2)(b^2-c^2)[a^2+b^2-(b^2+c^2)]\)

\(=(a^2-b^2)(b^2-c^2)(a^2-c^2)\)

\(=(a-b)(b-c)(a-c)(a+b)(b+c)(c+a)\)(2)

Từ (1)(2) suy ra \(D=\frac{1}{(a+b)(b+c)(c+a)}\)

Câu e)

Theo phần d ta có:

\(TS=(a-b)(b-c)(a-c)\)

\(MS=ab^2-ac^2-b^3+bc^2\)

\(=b^2(a-b)-c^2(a-b)=(a-b)(b^2-c^2)=(a-b)(b-c)(b+c)\)

Do đó: \(E=\frac{(a-b)(b-c)(a-c)}{(a-b)(b-c)(b+c)}=\frac{a-c}{b+c}\)

Bình luận (1)
NT
Xem chi tiết
H24
Xem chi tiết
KT
24 tháng 7 2018 lúc 22:07

a)  \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)\left(ac+bc+c^2\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

b)  \(VT=a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)

Bình luận (0)
TT
Xem chi tiết
LB
12 tháng 12 2018 lúc 19:51

a. \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ac}=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)

b. \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{\left(x-y+z\right)\left[\left(x-y\right)^2-\left(x-y\right)z+z^2\right]+3xy\left(x-y+z\right)}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2+3xy\right)}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy+yz-xz\right)}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{2\left(x-y+z\right)\left(x^2+y^2+z^2+xy+yz-xz\right)}{2\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}\)

\(=\dfrac{\left(x+y-z\right)\left(2x^2+2y^2+2z^2+2xy+2yz-2zx\right)}{2\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}\)

\(=\dfrac{\left(x-y+z\right)\left[\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]}{2\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}\)

\(=\dfrac{\left(x-y+z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}{2\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}=\dfrac{x-y+z}{2}\)

Bình luận (3)
LB
12 tháng 12 2018 lúc 20:09

Ôn tập: Phân thức đại số

Bình luận (0)
LB
12 tháng 12 2018 lúc 20:15

Ôn tập: Phân thức đại số

Bình luận (2)