Ôn tập: Phân thức đại số

TT

* Rút gọn phân thức:

a. \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ac}\)

b. \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

d. \(\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)

e. \(\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)

@Lê Gia Bảo @Lê Thị Nơ

Cứu trẫm. :3

LB
12 tháng 12 2018 lúc 19:51

a. \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ac}=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)

b. \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{\left(x-y+z\right)\left[\left(x-y\right)^2-\left(x-y\right)z+z^2\right]+3xy\left(x-y+z\right)}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2+3xy\right)}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy+yz-xz\right)}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{2\left(x-y+z\right)\left(x^2+y^2+z^2+xy+yz-xz\right)}{2\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}\)

\(=\dfrac{\left(x+y-z\right)\left(2x^2+2y^2+2z^2+2xy+2yz-2zx\right)}{2\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}\)

\(=\dfrac{\left(x-y+z\right)\left[\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]}{2\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}\)

\(=\dfrac{\left(x-y+z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}{2\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\right]}=\dfrac{x-y+z}{2}\)

Bình luận (3)
LB
12 tháng 12 2018 lúc 20:09

Ôn tập: Phân thức đại số

Bình luận (0)
LB
12 tháng 12 2018 lúc 20:15

Ôn tập: Phân thức đại số

Bình luận (2)

Các câu hỏi tương tự
QN
Xem chi tiết
SK
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết
LH
Xem chi tiết
QN
Xem chi tiết
DU
Xem chi tiết
NM
Xem chi tiết
NT
Xem chi tiết