Những câu hỏi liên quan
TT
Xem chi tiết
NT
14 tháng 4 2022 lúc 14:39

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

Bình luận (0)
PT
Xem chi tiết
HH
11 tháng 4 2017 lúc 20:59

1)

\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)

trừ 2 vế của pt cho nhau ta tìm được

\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)

để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)

Bình luận (0)
NK
Xem chi tiết
TN
Xem chi tiết
NT
2 tháng 1 2023 lúc 21:13

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

Bình luận (0)
NK
Xem chi tiết
SL
Xem chi tiết
NR
Xem chi tiết
AM
4 tháng 2 2022 lúc 21:17

Ta có: \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x+5-x=2m+9\\y=5-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=2m+4\\y=5-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=5-m-2\end{matrix}\right.\)

Gọi A=xy+x-1, ta có: \(A=\left(m+2\right)\left(5-m-2\right)+m+2-1\)

\(A=\left(m+2\right)\left(3-m\right)+m+1\)

\(A=-m^2+m+6+m+1\)

\(A=-m^2+2m+7=-\left(m-1\right)^2+8\)

\(A_{max}=7\Leftrightarrow m=1\) Khi đó x=3, y=2

Bình luận (0)
H24
Xem chi tiết
TM
7 tháng 1 2022 lúc 22:20

thay m=2 vào HPT ta có
\(\left\{{}\begin{matrix}x+2y=2+1\\2x+y=2.2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y=2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
vậy ..........
 

Bình luận (0)
H24
Xem chi tiết
NM
23 tháng 12 2021 lúc 22:49

Câu 1:

\(ĐK:x\ge2\)

Áp dụng BĐT cauchy ta có:

\(\left(x+1\right)+4\ge2\sqrt{4\left(x+1\right)}=4\sqrt{x+1}\\ \Leftrightarrow2\sqrt{x+1}\le\dfrac{x+5}{2}\)

Ta có \(\left(x-2\right)+1\ge2\sqrt{x-2}\Leftrightarrow\sqrt{x-2}\le\dfrac{x-1}{2}\)

\(\Leftrightarrow P\le\dfrac{x+5}{2}+\dfrac{x-1}{2}-x+2013=x+2-x+2013=2015\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+1=4\\x-2=1\end{matrix}\right.\Leftrightarrow x=3\)

Bình luận (0)
NM
23 tháng 12 2021 lúc 22:55

Câu 2:

\(HPT\Leftrightarrow\left\{{}\begin{matrix}10\sqrt{x}+15y^3=140\\4y^3-10\sqrt{x}=12\end{matrix}\right.\left(x\ge0\right)\\ \Leftrightarrow19y^3=152\\ \Leftrightarrow y^3=8\Leftrightarrow y=2\\ \Leftrightarrow2\sqrt{x}+24=28\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

Vậy \(\left(x;y\right)=\left(4;2\right)\)

Câu 3:

\(HPT\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\my+2m+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=\dfrac{3-2m}{m+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\x=\dfrac{3-2m}{m+1}\end{matrix}\right.\\ \Leftrightarrow xy=\dfrac{5\left(3-2m\right)}{\left(m+1\right)^2}\)

Đặt \(xy=t\)

\(\Leftrightarrow m^2t+2mt+t=15-10m\\ \Leftrightarrow m^2t+2m\left(t+5\right)+t-15=0\)

PT có nghiệm nên \(\Delta'=\left(t+5\right)^2-t\left(t-15\right)\ge0\)

\(\Leftrightarrow10t+25+15t\ge0\Leftrightarrow t\ge-1\)

Vậy \(xy_{min}=-1\Leftrightarrow\dfrac{5\left(2m-3\right)}{\left(m+1\right)^2}=1\Leftrightarrow m^2-8m+16=0\Leftrightarrow m=4\)

Bình luận (0)
NM
23 tháng 12 2021 lúc 23:04

Câu 4: \(a^2+b^2=4a+bc+540\)

c đâu ra vậy?

Câu 5:

Thay \(x=3\Leftrightarrow P\left(2\right)+2P\left(2\right)=3^2\Leftrightarrow P\left(2\right)=3\)

Thay \(x=\sqrt{2013}\)

\(\Leftrightarrow P\left(\sqrt{2013}-1\right)+2P\left(2\right)=\left(\sqrt{2013}\right)^2=2013\\ \Leftrightarrow P\left(\sqrt{2013}-1\right)+6=2013\\ \Leftrightarrow P\left(\sqrt{2013}-1\right)=2007\)

Bình luận (2)