Những câu hỏi liên quan
PD
Xem chi tiết
NM
29 tháng 10 2021 lúc 18:06

Xét tam giác ABC nhọn có \(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos\widehat{A}\)
\(\Rightarrow\cos\widehat{A}=\dfrac{AB^2+AC^2-BC^2}{2AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4\cdot\dfrac{1}{2}AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4S_{ABC}}\)

Cmtt: \(\left\{{}\begin{matrix}\cos\widehat{B}=\dfrac{AB^2+BC^2-AC^2}{4S_{ABC}}\\\cos\widehat{C}=\dfrac{AC^2+BC^2-AB^2}{4S_{ABC}}\end{matrix}\right.\)
\(\Rightarrow\cos\widehat{A}+\cos\widehat{B}+\cos\widehat{C}\\ =\dfrac{AB^2+AC^2-BC^2+AB^2+BC^2-AC^2+AC^2+BC^2-AB^2}{4S_{ABC}}\\ =\dfrac{AB^2+AC^2+BC62}{4S_{ABC}}\)

Bình luận (0)
ND
Xem chi tiết
H24
22 tháng 5 2019 lúc 15:03

Đây là định lý hàm cos!

- Kẻ đường cao AH xuống BC

⇒CH=AC.cosC

Áp dụng định lí Pitago ta có:

AB2=AH2+BH2=AC2−CH2+(BC−CH)2

=AC2−CH2+BC2−2BC.CH+CH2

=AC2+BC2−2BC.CH

=AC2+BC2−2AC.BC.cosC (Điều phải chứng minh)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
TM
10 tháng 10 2017 lúc 13:06

đánh lên lại tim đi,bai này lm nhiều quá đến ngán rồi

Bình luận (0)
H24
10 tháng 10 2017 lúc 13:08

là sao

Bình luận (0)
TM
10 tháng 10 2017 lúc 13:09

đánh lên lại xong nó hiện ra cau hỏi tương tự đó,vào kiếm,cả đống

Bình luận (0)
JC
Xem chi tiết
JC
Xem chi tiết
LG
Xem chi tiết
PT
Xem chi tiết
H24
19 tháng 8 2023 lúc 16:21

Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.

Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.

Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.

Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.

Bình luận (0)
H24
19 tháng 8 2023 lúc 16:21

Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.

Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.

Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.

Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.

Bình luận (0)
NT
19 tháng 8 2023 lúc 19:38

1:\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sin\widehat{BAC}\)

\(=AB\cdot AC\cdot\dfrac{1}{2}\cdot\dfrac{\sqrt{3}}{2}=AB\cdot AC\cdot\dfrac{\sqrt{3}}{4}\)

Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cos60=AB\cdot AC\)

=>\(BC^2=AB^2+AC^2-AB\cdot AC\)

2:

Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AF=AB/AC

góc EAF chung

=>ΔAEF đồng dạng với ΔABC

=>EF/BC=AE/AB=cos60=1/2 và \(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{4}\)

=>EF=BC/2 và \(S_{AEF}=\dfrac{1}{4}\cdot S_{ABC}\)

=>\(S_{AEF}=\dfrac{1}{4}\left(S_{AEF}+S_{BFEC}\right)\)

=>\(\dfrac{3}{4}\cdot S_{AEF}=\dfrac{1}{4}\cdot S_{BFEC}\)

=>\(S_{BFEC}=3\cdot S_{AFE}\)

Bình luận (0)
H24
Xem chi tiết