Những câu hỏi liên quan
NH
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
AH
9 tháng 9 2018 lúc 18:07

Lời giải:

Áp dụng định lý Vi-et cho pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=2m-4\end{matrix}\right.\)

Khi đó, với $m\neq 2$, ta có:

\(\frac{1}{x_1}.\frac{1}{x_2}=\frac{1}{x_2x_2}=\frac{1}{2m-4}\)

\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{2(m-1)}{2m-4}=\frac{m-1}{m-2}\)

Từ đây áp dụng định lý Vi-et đảo, \(\frac{1}{x_1}, \frac{1}{x_2}\) sẽ là nghiệm của pt:

\(X^2-\frac{m-1}{m-2}X+\frac{1}{2m-4}=0\)

Bình luận (0)
PD
Xem chi tiết
CN
Xem chi tiết
AN
9 tháng 11 2017 lúc 9:21

\(x^4-x^2+2x+2=y^2\)

Ta có: 

\(\left(x^2-1\right)^2\le x^4-x^2+2x+2< \left(x^2+2\right)^2\)

\(\Rightarrow x^4-x^2+2x+2=\left(\left(x^2-1\right)^2;x^4;\left(x^2-1\right)^2\right)\)

Tới đây tự làm nốt nhé

Bình luận (0)
PB
Xem chi tiết
TP
19 tháng 1 2020 lúc 18:07

Không biết bạn có gõ đúng đề cả 2 câu không ? Câu 2 không có nghiệm nguyên dương nhé bạn. Bạn xem lại.

Bình luận (0)
 Khách vãng lai đã xóa
DP
19 tháng 1 2020 lúc 18:59

có đúng đề không bạn

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
DG
Xem chi tiết
NT
6 tháng 7 2022 lúc 21:47

a: \(\text{Δ}=\left(4m-4\right)^2-4\left(-4m+10\right)\)

\(=16m^2-32m+16+16m-40\)

\(=16m^2-16m-24\)

\(=8\left(2m^2-2m-3\right)\)

Để pT có nghiệm kép thì \(2m^2-2m-3=0\)

hay \(m\in\left\{\dfrac{1+\sqrt{7}}{2};\dfrac{1-\sqrt{7}}{2}\right\}\)

b: Thay x=2 vào PT, ta được:

\(4+8\left(m-1\right)-4m+10=0\)

=>8m-8-4m+14=0

=>4m+6=0

hay m=-3/2

Theo VI-et, ta được: \(x_1+x_2=-4\left(m-1\right)=-4\cdot\dfrac{-5}{2}=10\)

=>x2=8

Bình luận (0)
H24
Xem chi tiết
NT
1 tháng 2 2019 lúc 19:11

Có nhiều cách để làm bài này nhé!

Áp dụng bất đẳng thức $x^2+y^2\geq 2xy$ nên ta có $x^2+y^2+xy \geq 3xy$
Mà $x^2+y^2+xy=x^2y^2 \geq 0$ nên suy ra $x^2y^2+3xy\leq 0 \iff -3\leq xy \leq 0$
Vì $x,y$ nguyên nên $xy$ nguyên, vậy nên $xy \in \left \{ -3,-2,-1,0\right \}$
Trường hợp $xy=-3 $ ta tìm được các nghiệm $(-1,3),(3,-1),(-3,1),(1,-3)$
Trường hợp $xy=-2$ ta tìm được các nghiệm $(-1,2),(2,-1),(1,-2),(-2,1)$
Trường hợp $xy=-1$ ta tìm được các nghiệm $(-1,1),(1,-1)$
Trường hợp $xy=0$ ta tìm được nghiệm $(0,0)$
Thử lại thì thấy chỉ có các nghiệm $(0,0),(1,-1),(-1,1)$ thỏa mãn và đó là các nghiệm nguyên cần tìm

Bình luận (0)
NT
1 tháng 2 2019 lúc 19:12

PT ban đầu tương đương
$x^2(y^2-1)-yx-y^2=0$
Xét $\Delta = 4y^4-3y^2$
=> $\sqrt{\Delta} = y\sqrt{4y^2-3}$
Nếu y=0 thì x=0
Xét TH y khác 0
Pt nhận nghiệm nguyên nên $sqrt{\Delta}$ nguyên
mà y nguyên rồi nên $4y^2-3$ phải là số chính phương
Đặt $4y^2-3=k^2$
Tới đây suy ra được y=1 hoặc y=-1
Thay vào pt ban đầu tìm được x tương ứng.
Vậy pt có 3 nghiệm (x;y)=(0;0);(-1;1);(1;-1)

Bình luận (0)
NT
1 tháng 2 2019 lúc 19:14

x^2+xy+y^2=x^2y^2
<> (1 - y^2).x^2 + xy + y^2 = 0
+ nếu 1 - y^2 = 0 <> y = +-1 thay vào => x => nghiệm (1,-1) và (-1,1)
+ nếu 1 - y^2 # 0 xem như pt bậc 2 ẩn x ta có
denta = y^2 - 4y^2.(1 - y^2) = y^2.(1 - 4 + 4y^2) = (4.y^2 - 3).y^2
- nếu y = 0 => x = 0
- nếu y # 0 ta có 4y^2 - 3 phải là số chính phương
<> 4y^2 - 3 = n^2
<> 4y^2 - n^2 = 3
<> (2y - n)(2y + n) =3
=> ta có các hệ sau
+ 2y - n = 3 và 2y + n =1
<> y = 1 và n =1 loại
+ 2y - n =1 và 2y + n = 3
<> y = n =1 loại
+ 2y - n = -3 và 2y + n = -1
<> y = -1 và n = 1 loại
+ 2y - n = -1 và 2y + n = -3
tương tự loại
Vậy có 3 nghiệm (0,0) (-1,1) và (1,-1)

Bình luận (1)