Những câu hỏi liên quan
HP
Xem chi tiết
TN
Xem chi tiết
HN
Xem chi tiết
NL
18 tháng 5 2021 lúc 17:47

Đề bài sai, phản ví dụ:

Với \(x=1;y=0\) thì x;y thỏa mãn \(\left(x+1\right)\left(y+1\right)=2\)

Nhưng \(P=1-\sqrt{6}\) không phải số nguyên

 

Bình luận (1)
TN
Xem chi tiết
NL
19 tháng 1 2024 lúc 2:29

Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:

\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)

Bình luận (0)
WR
Xem chi tiết
AN
1 tháng 4 2019 lúc 16:13

\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)

Nên phần còn lại vô nghiệm

Bình luận (0)
BA
Xem chi tiết
DC
25 tháng 11 2018 lúc 22:00

Có : \(\hept{\begin{cases}2\left(x+y\right)=z^2\Rightarrow2\left(x+y+z\right)+1=z^2+2z+1=\left(z+1\right)^2\\2\left(y+z\right)=x^2\Rightarrow2\left(y+z+x\right)+1=x^2+2x+1=\left(x+1\right)^2\\2\left(z+x\right)=y^2\Rightarrow2\left(z+x+y\right)+1=y^2+2y+1=\left(y+1\right)^2\end{cases}}\)  mà x,y,z không âm.

\(\Rightarrow x=y=z\) .

Thay vào 3 phương trình trên ta có : \(\orbr{\begin{cases}x=y=z=0\\x=y=z=4\end{cases}}\)

Vậy........

Bình luận (0)
DH
Xem chi tiết
NL
26 tháng 8 2021 lúc 21:41

Đặt \(\left\{{}\begin{matrix}x+2=a\\y-1=b\end{matrix}\right.\)

\(\left(a+\sqrt{a^2+1}\right)\left(b+\sqrt{b^2+1}\right)=1\)

\(\Rightarrow\left\{{}\begin{matrix}b+\sqrt{b^2+1}=\sqrt{a^2+1}-a\\a+\sqrt{a^2+1}=\sqrt{b^2+1}-b\end{matrix}\right.\)

\(\Rightarrow a+b+\sqrt{a^2+1}+\sqrt{b^2+1}=\sqrt{a^2+1}+\sqrt{b^2+1}-a-b\)

\(\Rightarrow a+b=0\)

\(\Rightarrow x+2+y-1=0\)

\(\Rightarrow x+y=-1\)

Bình luận (0)
H24
26 tháng 8 2021 lúc 21:23

\(\sqrt{x^2+5x+4}\) hay \(\sqrt{x^2+4x+5}\) thế bạn

Bình luận (1)
AH
26 tháng 8 2021 lúc 21:42

Lời giải:
ĐKĐB \(\Rightarrow (x+2-\sqrt{x^2+4x+5})(x+2+\sqrt{x^2+4x+5})(y-1+\sqrt{y^2-2y+2})=x+2-\sqrt{x^2+4x+5}\)

\(\Leftrightarrow -(y-1+\sqrt{y^2-2y+2})=x+2-\sqrt{x^2+4x+5}\)

\(\Leftrightarrow \sqrt{x^2+4x+5}-\sqrt{y^2-2y+2}=x+y+1(*)\)

 

ĐKĐB \(\Rightarrow (x+2+\sqrt{x^2+4x+5})(y-1+\sqrt{y^2-2y+2})(y-1-\sqrt{y^2-2y+2})=y-1-\sqrt{y^2-2y+2}\)

\(\Leftrightarrow -(x+2+\sqrt{x^2+4x+5})=y-1-\sqrt{y^2-2y+2}\)

\(\Leftrightarrow \sqrt{y^2-2y+2}-\sqrt{x^2+4x+5}=x+y+1(**)\)

Lấy $(*)+(**)\Rightarrow x+y+1=0$

$\Leftrightarrow x+y=-1$

 

Bình luận (3)
LC
Xem chi tiết
KN
27 tháng 10 2020 lúc 20:41

Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)

Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)

Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*

Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
KN
29 tháng 10 2020 lúc 20:24

Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)

Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))

\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)

\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2

Bình luận (0)
 Khách vãng lai đã xóa
KN
30 tháng 10 2020 lúc 11:38

Bài 4: Theo giả thiết, ta có: \(x\left(x+y+z\right)=3yz\)(*)

Vì x > 0 nên chia cả hai vế của (*) cho x2, ta được: \(1+\frac{y}{x}+\frac{z}{x}=3.\frac{y}{x}.\frac{z}{x}\)

+) \(\left(x+y\right)^3+\left(y+z\right)^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\le5\left(y+z\right)^3\)\(\Leftrightarrow\left(1+\frac{y}{x}\right)^3+\left(\frac{y}{x}+\frac{z}{x}\right)^3+3\left(1+\frac{y}{x}\right)\left(1+\frac{z}{x}\right)\left(\frac{y}{x}+\frac{z}{x}\right)\le5\left(\frac{y}{x}+\frac{z}{x}\right)^3\)(Chia hai vế của bất đẳng thức cho x3)

Đặt \(s=\frac{y}{x},t=\frac{z}{x}\left(s,t>0\right)\)thì giả thiết trở thành \(1+s+t=3st\)và ta cần chứng minh \(\left(1+s\right)^3+\left(1+t\right)^3+3\left(s+t\right)\left(1+s\right)\left(1+t\right)\le5\left(s+t\right)^3\)(**)

Ta có: \(1+s+t=3st\le\frac{3}{4}\left(s+t\right)^2\Leftrightarrow3\left(s+t\right)^2-4\left(s+t\right)-4\ge0\Leftrightarrow\left[3\left(s+t\right)+2\right]\left(a+b-2\right)\ge0\Rightarrow s+t\ge2\)(do \(3\left(s+t\right)+2>0\forall s,t>0\))

Đặt \(s+t=f\)thì \(f\ge2\)

(**)\(\Leftrightarrow4f^3-6f^2-4f\ge0\Leftrightarrow f\left(2f+1\right)\left(f-2\right)\ge0\)*đúng với mọi \(f\ge2\)*

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
TH
14 tháng 1 2021 lúc 18:32

Bất đẳng thức cần chứng minh tương đương:

\(y+2\ge\left(2-x\right)\left(2-z\right)\left(2-y\right)\).

Theo bất đẳng thức AM - GM: \(\left(2-x\right)\left(2-z\right)\le\dfrac{\left(4-x-z\right)^2}{4}=\dfrac{\left(2-y\right)^2}{4}\).

Do đó ta chỉ cần chứng minh:

\(y+2\ge\dfrac{\left(2-y\right)^3}{4}\).

Mặt khác, bđt trên tương đương: \(\dfrac{y\left[\left(y-3\right)^2+7\right]}{4}\ge0\) (luôn đúng).

Do đó bđt ban đầu cũng đúng.

Đẳng thức xảy ra khi y = 0; x = z = 1.

 

 

Bình luận (0)