Đề bài sai, phản ví dụ:
Với \(x=1;y=0\) thì x;y thỏa mãn \(\left(x+1\right)\left(y+1\right)=2\)
Nhưng \(P=1-\sqrt{6}\) không phải số nguyên
Đề bài sai, phản ví dụ:
Với \(x=1;y=0\) thì x;y thỏa mãn \(\left(x+1\right)\left(y+1\right)=2\)
Nhưng \(P=1-\sqrt{6}\) không phải số nguyên
cho các số thực dương x,y thỏa mãn \(\sqrt{y}\left(y+1\right)-6x-9=\left(2x+4\right)\sqrt{2x+3}-3y\). Tìm giá trị lớn nhất của biểu thức M = xy + 3y - 4\(x^2\) - 3
cho x,y,z là số dương thỏa mãn x+y+z ≤3 tìm giá trị lớn nhất của biểu thức
P=\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Giả sử x,y là các số thực dương thỏa mãn điều kiện \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)>=4\)
Tìm Min
\(P=\dfrac{x^2}{y}+\dfrac{y^2}{x}\)
1. Cho \(x,y\) thỏa mãn \(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)
Tính \(x+y\)
2. Cho \(a,b\ne-2\) thỏa mãn \(\left(2a+1\right)\left(2b+1\right)=9\)
Tính \(A=\dfrac{1}{2+a}+\dfrac{1}{2+b}\)
Cho biểu thức B = \(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn biểu thức B
b) Chứng minh \(B\ge0\)
Cho các số thực dương x, y, z thỏa mãn x3 + y3 + z3 = 24. Tìm GTNN của biểu thức
\(M=\dfrac{xyz+2\left(x+y+z\right)^2}{xy+yz+zx}-\dfrac{8}{xy+yz+zx+1}\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{xy+\dfrac{x-y}{x^2+y^2+1}}+\sqrt{x}=y+\sqrt{y}\\\left|x-1\right|+\left|y-2\right|=1+x^2-y^2\end{matrix}\right.\)
Cho x,y là các số thực dương thỏa mãn xy+1≤ x. Tìm giá trị lớn nhất của biểu thức Q=\(\dfrac{x+y}{\sqrt{3x^2-xy+y^2}}\)
Các số dương x,y,z thỏa mãn điều kiện : x + y + z = 1. Tìm giá trị nhỏ nhất của biểu thức : F = \(\dfrac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Giúp mình với mình cần gấp