Những câu hỏi liên quan
MT
Xem chi tiết
LH
Xem chi tiết
NS
Xem chi tiết
BT
Xem chi tiết
HG
Xem chi tiết
VH
11 tháng 1 2018 lúc 11:07

a. hạ đương cao AK

suy ra BK=KC=3:2=1.5(cm)

Xét tam giac ABC có góc AKB=90

AK^2+BK^2=AB^2(đl py-ta-go)

AK=\(\dfrac{3\sqrt{3}}{2}\)

SABC=\(\dfrac{1}{2}.\dfrac{3\sqrt{3}}{2}.3=\dfrac{9\sqrt{3}}{4}\)

Bình luận (0)
NA
Xem chi tiết
LL
28 tháng 11 2016 lúc 21:44

a, vì BD song song với AC nên góc B2 bằng góc C2. tương tự được góc C1 bằng góc B1.Do đó tam giác ABC = tam giác BAE(g.c.g) (dpcm)

b, vì AC song song với BD nên góc D bằng góc ACF.

vì AF song song với BC nên góc C1= góc CAF = B2.

theo câu a, tam giác ABC= tam giác DCB nên AC=BD, AB=DC

Do đó tam giác BDC=tam giác ACF(g.c.g) nên DC = CF=AB nên DF= DC+CF=2.AB.

Tương tự ta đc; DE=2.AC, EF=2.BC

Do đó Chu vi tam giác DEF bằng 2 lần chu vi tam giác ABC và bằng 30 cm

Bình luận (1)
H24
19 tháng 2 2018 lúc 11:28

a, vì BD song song với AC nên góc B2 bằng góc C2. tương tự được góc C1 bằng góc B1.Do đó tam giác ABC = tam giác BAE(g.c.g) (dpcm)

b, vì AC song song với BD nên góc D bằng góc ACF.

vì AF song song với BC nên góc C1= góc CAF = B2.

theo câu a, tam giác ABC= tam giác DCB nên AC=BD, AB=DC

Do đó tam giác BDC=tam giác ACF(g.c.g) nên DC = CF=AB nên DF= DC+CF=2.AB.

Tương tự ta đc; DE=2.AC, EF=2.BC

Do đó Chu vi tam giác DEF bằng 2 lần chu vi tam giác ABC và bằng 30 cm

Bình luận (0)
NT
Xem chi tiết
LN
26 tháng 2 2020 lúc 8:44

A B C H D

Xét tam giác ABC có góc B > góc C suy ra AC > AB

Xét tam giác vuông ABH và tam giác vuông ACH

chung AH

có AC > AB (CMT)

suy ra HC > HB

c) Vì HC > HB (CMT)

Xét tam giác vuông BHD và tam giác vuông CHD

Có chung DH , BC >HB nên DC >DB

Xét tam giác BDC có DC > DB nên góc DBC > góc DCB

Bình luận (0)
 Khách vãng lai đã xóa
LN
26 tháng 2 2020 lúc 8:56

Bài 16: 

A B C M D

Xét tam giác ABM và tam giác DCM

có AM=DM (GT)

góc AMB=góc DMC (đối đỉnh)

BM=MC (GT)

suy ra tam giác ABM=tam giác DCM (c.g.c)   (1)

b) Từ (1) suy ra góc MAB = góc MDC (hai góc tuơng ứng)

mà  góc MAB so le trong  góc MDC

suy ra AB // CD 

c) Từ (1) suy ra AB = CD

Xét tam giác ACD có AC + CD > AD

mà AD=2AM, AB=CD (CMT)

suy ra AC +AB >2AM

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
NU
28 tháng 2 2020 lúc 9:02

số đo các góc A,B,C lần lượt tỉ lệ với 3; 2; 1 

=> A/3 = B/2 = C/1

=> (A+B+C)/(3+2+1) = A/3 = B/2 = C/1

A + B + C = 180

=>  180/6 = 30 = A/3 = B/2 = C/1

=> A = 30.3 = 90

     B = 30.2 = 60

     C = 30

Bình luận (0)
 Khách vãng lai đã xóa
HA
28 tháng 2 2020 lúc 9:13

a)XÉT\(\Delta ABC\)

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)

gọi các GÓC A,B,C LẦN LƯỢT LÀ a,b,c TỈ LỆ VỚI 3;2;1

\(\Rightarrow a:b:c=3:2:1\)

\(\Rightarrow\frac{a}{3}=\frac{b}{2}=\frac{c}{1}\)và \(a+b+c=180\)

theo tính chất dãy tỉ số bằng nhau có

 \(\frac{a}{3}=\frac{b}{2}=\frac{c}{1}=\frac{a+b+c}{3+2+1}=\frac{180}{6}=30\)

do đó \(\frac{a}{3}=30\Rightarrow a=3.30=90\)

\(\frac{b}{2}=30\Rightarrow b=2.30=60\)

\(\frac{c}{1}=30\Rightarrow c=1.30=30\)

vậy \(\widehat{A}=90^0;\widehat{B}=60^o;\widehat{C}=30^o\)

Bình luận (0)
 Khách vãng lai đã xóa
LN
28 tháng 2 2020 lúc 9:16

Tam giác ABC có  góc A+ góc B+ góc C = 1800

Vì góc A, góc B, góc C tỉ lệ với 3;2;1 nên

\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{1}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+2+1}=\frac{180^0}{6}=30^0\)

\(\frac{\widehat{A}}{3}=30^0\Rightarrow\widehat{A}=90^0\)

\(\frac{\widehat{B}}{2}=30^0\Rightarrow\widehat{B}=60^0\)

\(\frac{\widehat{C}}{1}=30^0\Rightarrow\widehat{C}=30^0\)

Tự vẽ hình nhé

Xét tam giác vuông ADM và tam giác vuông CDM

có BM chung

DA=DC (GT) 

suy ra tam giác ADM = tam giác CDM (C.G.C)

suy ra MA=MC (hai cạnh tương ứng)

suy ra tam giác AMC cân tại M suy ra góc MAC=góc MCB = 30 độ

suy ra góc CMA = 120 độ

mà góc CMA kề bù góc AMB

suy ra góc AMB = 60 độ

Góc BAM + góc MAC = 90 độ suy ra góc BAM = 60 độ

tam giác BAM có góc B=góc BAM=góc BMA= 60 độ suy ra tam giác BAM đều

Bình luận (0)
 Khách vãng lai đã xóa
DP
Xem chi tiết
TT
3 tháng 4 2022 lúc 15:46

undefinedundefined

Bình luận (0)
KN
Xem chi tiết
NM
29 tháng 10 2021 lúc 22:26

a, \(BC=BH+HC=5\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{CH\cdot BC}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b, Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=2\left(cm\right)\)

Bình luận (0)
NT
29 tháng 10 2021 lúc 22:27

a: BC=4+1=5(cm)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b: \(AH=\sqrt{HB\cdot HC}=2\left(cm\right)\)

Bình luận (0)