Những câu hỏi liên quan
3P
Xem chi tiết
NT
26 tháng 10 2023 lúc 21:25

a: ĐKXĐ: x>=-3/2

\(\sqrt{x^2+4}=\sqrt{2x+3}\)

=>\(x^2+4=2x+3\)

=>\(x^2-2x+1=0\)

=>\(\left(x-1\right)^2=0\)

=>x-1=0

=>x=1(nhận)

b: \(\sqrt{x^2-6x+9}=2x-1\)(ĐKXĐ: \(x\in R\))

=>\(\sqrt{\left(x-3\right)^2}=2x-1\)

=>\(\left\{{}\begin{matrix}\left(2x-1\right)^2=\left(x-3\right)^2\\x>=\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+2\right)\left(3x-4\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)

=>x=4/3(nhận) hoặc x=-2(loại)

c:

Sửa đề: \(\sqrt{4x+12}=\sqrt{9x+27}-5\)

ĐKXĐ: \(x>=-3\)

\(\sqrt{4x+12}=\sqrt{9x+27}-5\)

=>\(2\sqrt{x+3}=3\sqrt{x+3}-5\)

=>\(-\sqrt{x+3}=-5\)

=>x+3=25

=>x=22(nhận)

d: ĐKXĐ: \(\left[{}\begin{matrix}x< =\dfrac{3-\sqrt{5}}{4}\\x>=\dfrac{3+\sqrt{5}}{4}\end{matrix}\right.\)
\(\sqrt{4x^2-6x+1}=\left|2x-5\right|\)

=>\(\sqrt{\left(4x^2-6x+1\right)}=\sqrt{4x^2-20x+25}\)

=>\(4x^2-6x+1=4x^2-20x+25\)

=>\(-6x+20x=25-1\)

=>\(14x=24\)

=>x=12/7(nhận)

Bình luận (0)
MT
Xem chi tiết
QN
Xem chi tiết
GH
11 tháng 7 2023 lúc 19:05

ĐK: \(x^2-2x+1>0\)

PT \(\Leftrightarrow\sqrt{\left(x-1\right)^2}+x-6x+9=0\)

\(\Leftrightarrow\left|x-1\right|-5x+9=0\\ \Leftrightarrow\left|x-1\right|=-9+5x\\ \Leftrightarrow\left[{}\begin{matrix}x-1=-9+5x\\1-x=-9+5x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=\dfrac{10}{6}\left(nhận\right)\end{matrix}\right.\)

b

ĐK: \(\left\{{}\begin{matrix}2x^2-3>0\\4x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>\dfrac{\sqrt{6}}{2}\\x< -\dfrac{\sqrt{6}}{2}\end{matrix}\right.\\x>\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow x>\dfrac{\sqrt{6}}{2}\)

PT \(\Leftrightarrow2x^2-3=4x-3\)

\(\Leftrightarrow2x^2-4x=0\\ \Leftrightarrow2x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

c

ĐK: \(\left\{{}\begin{matrix}1-x^2\ge0\\x-1\ge0\end{matrix}\right.\Leftrightarrow x=1\)

PT \(\Leftrightarrow1-x^2=x-1\)

\(\Leftrightarrow x^2+x-2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

 

Bình luận (0)
TB
Xem chi tiết
PL
6 tháng 7 2019 lúc 13:43

\(a,\sqrt{x-2\sqrt{x}-1}-\sqrt{x-1}=1.\)

\(\Rightarrow\sqrt{\left(\sqrt{x}-1\right)^2}-\sqrt{x-1}=1\)

\(\Rightarrow x-1-\sqrt{x-1}=1\)

\(\Rightarrow\sqrt{x-1}=x-1+1\)

\(\Rightarrow x-1=x^2\Rightarrow x^2-x+1=0\) ( vô nghiệm vì nó luôn lớn hơn 0 )

Bình luận (0)
PL
6 tháng 7 2019 lúc 14:20

\(đkxđ\Leftrightarrow2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)

\(c,\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}.\)

\(\Rightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)

\(\Rightarrow\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)

\(\Rightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)

\(\Rightarrow\sqrt{2x-1}+1+\sqrt{2x-1}-1=2\)

\(\Rightarrow\sqrt{2x-1}+\sqrt{2x-1}=2\)

\(\Rightarrow\sqrt{2x-1}=1\Rightarrow\sqrt{2x-1}^2=1\)

\(\Rightarrow2x-1=1\Rightarrow2x=2\Leftrightarrow x=1\)\(\left(tm\right)\)

d tương tự nha , nhân thêm 2 vế với \(\sqrt{6}\)là ra

Bình luận (0)
LG
Xem chi tiết
AH
22 tháng 6 2021 lúc 23:23

Lời giải:

a. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$

$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$

$\Leftrightarrow |\sqrt{x-4}+2|=2$

$\Leftrightarrow  \sqrt{x-4}+2=2$

$\Leftrightarrow \sqrt{x-4}=0$

$\Leftrightarrow x=4$ (tm)

b. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Rightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)

c.

PT \(\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x(x-1)=0\end{matrix}\right.\Rightarrow x=1\)

Bình luận (0)
H24
Xem chi tiết
NL
20 tháng 9 2020 lúc 11:40

a/ ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-\sqrt{x-1}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-\sqrt{x-1}=1\)

- Với \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\)

Pt tương đương:

\(\sqrt{x-1}-1-\sqrt{x-1}=1\Leftrightarrow-1=1\left(vn\right)\)

- Với \(1\le x\le2\)

\(\Rightarrow1-\sqrt{x-1}-\sqrt{x-1}=1\)

\(\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

Bình luận (0)
NL
20 tháng 9 2020 lúc 11:43

b/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)

\(\Leftrightarrow\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{2x-1}+1\right|+\left|1-\sqrt{2x-1}\right|=2\)

Ta có:

\(\left|\sqrt{2x+1}+1\right|+\left|1-\sqrt{2x-1}\right|\ge\left|\sqrt{2x+1}+1+1-\sqrt{2x-1}\right|=2\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left(\sqrt{2x+1}+1\right)\left(1-\sqrt{2x-1}\right)\ge0\)

\(\Leftrightarrow\sqrt{2x-1}\le1\)

\(\Leftrightarrow x\le1\)

Vậy nghiệm của pt là \(\frac{1}{2}\le x\le1\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
20 tháng 9 2020 lúc 11:46

c/ ĐKXĐ: \(x\ge\frac{3}{2}\)

\(\sqrt{6x+6\sqrt{6x-9}}+\sqrt{6x-6\sqrt{6x-9}}=6\)

\(\Leftrightarrow\sqrt{\left(\sqrt{6x-9}+3\right)^2}+\sqrt{\left(\sqrt{6x-9}-3\right)^2}=6\)

\(\Leftrightarrow\left|\sqrt{6x-9}+3\right|+\left|3-\sqrt{6x-9}\right|=6\)

Ta có:

\(\left|\sqrt{6x-9}+3\right|+\left|3-\sqrt{6x-9}\right|\ge\left|\sqrt{6x-9}+3+3-\sqrt{6x-9}\right|=6\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left(\sqrt{6x-9}+3\right)\left(3-\sqrt{6x-9}\right)\ge0\)

\(\Leftrightarrow\sqrt{6x-9}\le3\Rightarrow x\le3\)

Vậy nghiệm của pt là \(\frac{3}{2}\le x\le3\)

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
H24
Xem chi tiết
NT
9 tháng 6 2023 lúc 21:21

a: ĐKXĐ: \(x\in R\)

b: ĐKXĐ: \(x\in R\)

Bình luận (0)
KN
Xem chi tiết
NT
2 tháng 7 2023 lúc 11:32

1: \(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

=>căn x-3=0

=>x-3=0

=>x=3

2: =>\(\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+2\cdot\sqrt{2x-3}\cdot4+16}=5\)

=>\(\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)
=>2*căn 2x-3+5=5

=>2x-3=0

=>x=3/2

Bình luận (0)
LN
Xem chi tiết