Những câu hỏi liên quan
HH
Xem chi tiết
AL
11 tháng 4 2021 lúc 16:07

f(x)=x2+x+1=x2+\(\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

      =\(x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)

      =\(\left(x+\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^{^2}+\dfrac{3}{4}\)

=>f(x)≥\(\dfrac{3}{4}\)

=>đa thức trên vô nghiệm

Bình luận (0)
AL
11 tháng 4 2021 lúc 16:13

Bài này có nhiều cách, vừa rồi là cách cơ bản, còn nếu bạn muốn nâng cao chút thì có thể dùng cách này nha:

Xét x≥0 thì x+1>0

       x(x+1)≥0=>x(x+1)+1>0 =>x2+x+1>0                               (1)

Xét -1<x<0 thì x+1≤0. Ta lại có x2≥0 nên x2+x+1 >0                   (2)

Xét x≤-1 thì x<0 và x+1≤0. Do đó

    x(x+1) ≥0=>x(x+1) +1>0=>x2+x+1>0                           (3)

Từ (1), (2), (3)=> đa thức f(x) vô nghiệm

Bình luận (0)
H24
11 tháng 4 2021 lúc 18:35

`***`:Cách khác  bạn dưới

`x^2+x+1=0`

`Delta=b^2-4ac`

`=1-4=-4<0`

`=>` pt vô no

Bình luận (0)
HH
Xem chi tiết
NT
10 tháng 5 2022 lúc 22:41

\(M=x^2+8x+16+1=\left(x+4\right)^2+1>0\)

Do đó: M vô nghiệm

Bình luận (0)
HN
Xem chi tiết
MH
8 tháng 5 2022 lúc 20:01

\(\text{∆}=5^2-4.9\)

\(=25-36=-11< 0\)

⇒ phương trình vô nghiệm

Bình luận (0)
TC
8 tháng 5 2022 lúc 20:02

ta có x2 ≥0

5x≥0

mà 9 > 0

\(=>x^2+5x+9>0\)

hay chứng tỏ đa thức vô nghiệm

Bình luận (0)
TT
8 tháng 5 2022 lúc 20:03

Ta có x2+5x luôn lớn hơn hoặc bằng 0 với mọi x

=>x2+5x +9 lớn hơn 0 với mọi x

=>Đa thức trên vô nghiệm

Bình luận (0)
NL
Xem chi tiết
NT
25 tháng 2 2022 lúc 14:24

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

Bình luận (1)
HT
Xem chi tiết
SN
9 tháng 4 2018 lúc 21:07

Ta có : x2 - 4x + 16 

= x2 - 4x + 4 + 12 

= (x - 2)2 + 12 

Vì \(\left(x-2\right)^2\ge0\forall x\)

Nên : (x - 2)2 + 12 \(>0\forall x\)

Hay x2 - 4x + 16 \(>0\forall x\)

Vậy đa thức trên vô nghiệm 

Bình luận (0)
MZ
Xem chi tiết
MZ
10 tháng 4 2021 lúc 20:38

Bằng 2 cách

Bình luận (0)
MN
10 tháng 4 2021 lúc 20:39

f(x) đề có cho bằng 0 không vậy em ? 

Bình luận (1)
NT
10 tháng 4 2021 lúc 20:45

Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

hay đa thức \(f\left(x\right)=x^2+x+1\) vô nghiệm

Bình luận (0)
VH
Xem chi tiết
NT
Xem chi tiết
LQ
Xem chi tiết
NH

F(\(x\)) = \(x^{2024}\) + (\(x-1\))4 + 10

F(\(x\)) = ( \(x^{1012}\) )2 + ((\(x\) - 1)2)2 + 10
vì (\(x^{2012}\))2 ≥ 0 ; ((\(x\) -1)2)2 ≥ 0

⇒ F(\(x\)) ≥ 0 + 0 + 10 = 10 > 0  (∀ \(x\)

Vậy F(\(x\)) vô nghiệm ( đpcm)

 

Bình luận (0)
TN
Xem chi tiết
ND
27 tháng 6 2020 lúc 15:21

Bài làm:

Ta có: \(x^2-x+1=0\)

\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)(vô lý)

=> không tồn tại x thỏa mãn

=> Đa thức vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa