HH

Chứng minh đa thức x2+x+1 vô nghiệm

AL
11 tháng 4 2021 lúc 16:07

f(x)=x2+x+1=x2+\(\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

      =\(x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)

      =\(\left(x+\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^{^2}+\dfrac{3}{4}\)

=>f(x)≥\(\dfrac{3}{4}\)

=>đa thức trên vô nghiệm

Bình luận (0)
AL
11 tháng 4 2021 lúc 16:13

Bài này có nhiều cách, vừa rồi là cách cơ bản, còn nếu bạn muốn nâng cao chút thì có thể dùng cách này nha:

Xét x≥0 thì x+1>0

       x(x+1)≥0=>x(x+1)+1>0 =>x2+x+1>0                               (1)

Xét -1<x<0 thì x+1≤0. Ta lại có x2≥0 nên x2+x+1 >0                   (2)

Xét x≤-1 thì x<0 và x+1≤0. Do đó

    x(x+1) ≥0=>x(x+1) +1>0=>x2+x+1>0                           (3)

Từ (1), (2), (3)=> đa thức f(x) vô nghiệm

Bình luận (0)
H24
11 tháng 4 2021 lúc 18:35

`***`:Cách khác  bạn dưới

`x^2+x+1=0`

`Delta=b^2-4ac`

`=1-4=-4<0`

`=>` pt vô no

Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
NL
Xem chi tiết
HT
Xem chi tiết
MZ
Xem chi tiết
VH
Xem chi tiết
NT
Xem chi tiết
LQ
Xem chi tiết
TN
Xem chi tiết