Những câu hỏi liên quan
PV
Xem chi tiết
AT
19 tháng 7 2021 lúc 8:53

Ta có: \(HC-HB=9\Rightarrow HC=9+HB\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH^2=HB.HC=HB\left(HB+9\right)\Rightarrow HB^2+9HB=36\)

\(\Rightarrow HB^2+9HB-36=0\Rightarrow\left(HB-3\right)\left(HB+12\right)=0\)

mà \(HB>0\Rightarrow HB=3\left(cm\right)\Rightarrow HC=3+9=12\left(cm\right)\)

Bình luận (1)
NT
19 tháng 7 2021 lúc 14:01

Ta có: HC-HB=9(gt)

nên HB=HC-9

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(HB\cdot HC=AH^2\)

\(\Leftrightarrow HC\left(HC-9\right)-36=0\)

\(\Leftrightarrow HC^2-9HC-36=0\)

\(\Leftrightarrow HC^2-12HC+3HC-36=0\)

\(\Leftrightarrow\left(HC+3\right)\left(HC-12\right)=0\)

\(\Leftrightarrow HC=12\left(cm\right)\)

\(\Leftrightarrow HB=HC-9=12-9=3\left(cm\right)\)

Bình luận (0)
PT
Xem chi tiết
DT
14 tháng 11 2018 lúc 21:59

+)Xét tam giác DHC có:DN 

Bình luận (0)
GH
Xem chi tiết
NT
7 tháng 7 2022 lúc 9:54

a: Xét ΔABD có

AH là đường cao

AH là đường trung tuyến

DO đó; ΔABD cân tại A

b: Ta có: \(\widehat{MCB}=90^0-\widehat{CDM}\)

\(\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{ADH}=90^0-\widehat{CDM}\)

=>góc MCB=góc ACB

hay CB là phân giác của góc AMC

c: Xét ΔCAQ có

CH là đường phân giác

CH là đường cao

Do đó: ΔCAQ cân tại C

Bình luận (0)
H24
Xem chi tiết
JC
Xem chi tiết
KT
22 tháng 3 2018 lúc 21:15

a) Ta có:   \(\widehat{HAB}+\widehat{HBA}=90^0\)

                 \(\widehat{HAB}+\widehat{HAC}=90^0\)

suy ra:   \(\widehat{HBA}=\widehat{HAC}\)

Xét 2 tam giác vuông:  \(\Delta HBA\) và  \(\Delta HAC\) có:

           \(\widehat{BHA}=\widehat{AHC}=90^0\)

          \(\widehat{HBA}=\widehat{HAC}\)   (CMT)

suy ra:   \(\Delta HBA~\Delta HAC\)

b)   \(BC=BH+HC=25+36=61\)cm

 \(\Delta HBA~\Delta HAC\) \(\Rightarrow\)\(\frac{HB}{HA}=\frac{AB}{AC}\)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{5}{6}\)\(\Leftrightarrow\)\(\frac{AB}{5}=\frac{AC}{6}\)\(\Leftrightarrow\)\(\frac{AB^2}{25}=\frac{AC^2}{36}=\frac{AB^2+AC^2}{25+36}=\frac{BC^2}{61}=\frac{61^2}{61}=61\)

suy ra:    \(\frac{AB^2}{25}=61\) \(\Leftrightarrow\) \(AB=\sqrt{1525}\) cm

            \(\frac{AC^2}{36}=61\)\(\Leftrightarrow\) \(AC=\sqrt{2196}\)cm

p/s: tham khảo

Bình luận (0)
PN
Xem chi tiết
NT
26 tháng 6 2022 lúc 9:44

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

b: \(BC=HB+HC=61\left(cm\right)\)

\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)

\(AC=\sqrt{36\cdot61}=6\sqrt{61}\left(cm\right)\)

Bình luận (0)
PD
Xem chi tiết
NA
Xem chi tiết
BH
Xem chi tiết