Những câu hỏi liên quan
VB
Xem chi tiết
H24
13 tháng 4 2023 lúc 21:20

Bài 1

Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)

\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm

VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)

\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)

\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)

Ra hai kết quả khác nhau 

\(\Rightarrow x=-4\) không là nghiệm

Bài 2

\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow\) phương trình vô nghiệm 

Bình luận (0)
LD
Xem chi tiết
AN
23 tháng 10 2016 lúc 21:34

Giả sử f(x) có nghiệm nguyên là a, Khi đó f(x)=(x−a)Q(x)
Thay x =1;2 vào biểu thức trên ta được : f(1)=(1−a)Q(1) và f(2)=(2−a)Q(2)

=> f(1).f(2)=(a−1)(a−2)Q(1).Q(2)

Hay 2013=(a−1)(a−2).Q(1)Q(2)

Ta có VT không chia hết cho 2, VP chia hết cho 2 ( vì (a−1)(a−2) chia hết cho 2 )

=> PT vô nghiệm

=> f(x) không có nghiệm nguyên 

Bình luận (0)
TH
Xem chi tiết
EC
1 tháng 8 2021 lúc 16:00

Để phương trình có nghiệm thì f(x)=0

    ⇔x2-2x+2016=0

    ⇔ (x-1)2+2015=0

    ⇔ (x-1)2=-2015 (vô lí do (x-1)2≥0)

Vậy,phương trình vô nghiệm

Bình luận (0)
TL
1 tháng 8 2021 lúc 16:01

F(x)=x2−2x+2016F(x)

F(x)=x2−2x+1+2015

F(x)=x2−x−x+1+2015

=x(x−1)−(x−1)+2015

=(x−1)^2+2015

Vì (x−1)2+2015≥2015>0 với mọi x ∈ R

=>F(x) vô nghiệm  (đpcm)

Bình luận (0)
NT
Xem chi tiết
LC
2 tháng 5 2019 lúc 20:16

Câu 1 :

 Ta có: \(f\left(x\right)=0\Leftrightarrow x^2+2x-3=0\)

                               \(\Leftrightarrow\left(x+1\right)^2-4=0\)

                               \(\Leftrightarrow\left(x+1\right)^2=4\)

                               \(\Leftrightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)

Vậy \(x\in\left\{-5;3\right\}\)là nghiệm của đa thức f(x)

Câu 2 :

\(q\left(x\right)=x^2-10x+29\)

            \(=\left(x-5\right)^2+4\)

Ta có: \(\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-5\right)^2+4\ge4\forall x\)

Vậy đa thức trên ko có nghiệm

Bình luận (0)
DT
2 tháng 5 2019 lúc 20:23

dễ mà

câu 1

f(x)=x^2+2x-3

ta có f(x)=0

suy ra x^2+2x-3=0

tương đương:x^2-x+3x-3=0

tương đương:x(x-1)+3(x-1)=0

tương đương: (x-1)(x+3)=0

tương đương: x-1=0                  x=1

                        x+3=0                 x=-3

vậy đa thức f(x) có hai nghiệm là 1 và -3

câu 2: x^2-10x+29

tương đương: x^2-5x-5x+25+4

tương đương: x(x-5)-5(x-5)+4

tương đương: (x-5)(x-5)+4

tương đương: (x-5)^2+4

vì (x-5)^2> hoặc bằng 0 với mọi x

4>0 

suy ra x^2-10x+29 vô nghiệm

Bình luận (0)
NT
2 tháng 5 2019 lúc 20:31

3 k nha bạn tốt quá mình đag cần gấp :)

Bình luận (0)
TP
Xem chi tiết
H24
10 tháng 4 2021 lúc 21:48

Giả sử x=a là nghiệm nguyên f(a)

\(\Leftrightarrow-4a^4+3a^3-2a^2+a-1=0\\ \Leftrightarrow-4a^4-2a^2+4a^3-a\left(a^2-1\right)=1\\ \Leftrightarrow1=-4a^4+4a^3-2a^2-\left(a+1\right)a\left(a-1\right)\left(1\right)\)

Vì a nguyên nên \(\left(a+1\right)a⋮2\Rightarrow\left(a+1\right)a\left(a-1\right)⋮2\)

Mà \(-4a^4+4a^3-2a^2⋮2\)

\(\Rightarrow-4a^4+4a^3-2a^2-\left(a-1\right)a\left(a+1\right)⋮2\) kết hợp (1)

\(\Rightarrow1⋮2\left(VL\right)\)

Vậy không tồn tại nghiệm nguyên của f(x)

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 1 2017 lúc 12:17

Giải bài 62 trang 50 SGK Toán 7 Tập 2 | Giải toán lớp 7

Bình luận (0)
KN
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
ZN
2 tháng 5 2021 lúc 16:47

Ta có :

\(f\left(x\right)=x^6-x^3+x^2-x+1=\left(x^6-x^3+\frac{1}{4}\right)+\left(x^2-x+\frac{1}{4}\right)+\frac{1}{2}\)\(=\left(x^3+\frac{1}{2}\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)\(\ge\)\(\frac{1}{2}\)với mọi x )

Vậy đa thức không có nghiệm trên tập hợp số thực.

Bình luận (0)
 Khách vãng lai đã xóa