CMR với mọi số nguyên n thì: n2 + n + 1 không chia hết cho 9.
cmr với mọi số nguyên n thì (n-1)(n+2) +12 không chia hết cho 9
Giả sử ta có :n = 2 =>(n-1)(n+2)+2 không chia hết cho 9
=>(n-1)(n+2)+2 không chia hết cho 9 với mọi n !!!!!!!
Chắc chắn đúng !!!!!!!!!!!!!!
Ủng hộ mình nha bạn ơi !!!!!!!!!!!!!!!!!!!
CMR với mọi số nguyên n thì n4+5x2+9 không chia hết cho 121
Thống nhất biểu thức là $A=n^4+5n^2+9$ bạn nhé, không phải $x$.
Lời giải:
Giả sử $n^4+5n^2+9\vdots 121$
$\Rightarrow n^4+5n^2+9\vdots 11$
$\Rightarrow n^4+5n^2-11n^2+9\vdots 11$
$\Rightarrow n^4-6n^2+9\vdots 11$
$\Rightarrow (n^2-3)^2\vdots 11$
$\Rightarrow n^2-3\vdots 11$
Đặt $n^2-3=11k$ với $k$ nguyên
Khi đó: $n^4+5n^2+9=(11k+3)^2+5(11k+3)+9=121k^2+121k+33\not\vdots 121$ (trái với giả sử)
Vậy giả sử là sai. Tức là với mọi số nguyên $n$ thì $n^4+5n^2+9$ không chia hết cho $121$
CMR:
(n-1)2(n+1)+(n2-1) luôn chia hết cho 6 với mọi số nguyên n.
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!\)
hay \(n\left(n-1\right)\left(n+1\right)⋮6\)
CMR với mọi số tự nhiên n thì n2+n+6 không chia hết cho 5
CMR với mọi số tự nhiên n thì n2+3n+11 không chia hết cho 49
Ta có:
\(n^2+3n+11\)
\(=n^2+3n+18-7\)
\(=\left(n+2\right)\left(n+9\right)-7\)
Giả sử: \(n^2+3n+11\) ⋮ 49 \(\Rightarrow n^2+3n+11\) ⋮ 7
Mà: \(\left(n+9\right)-\left(n+2\right)\) ⋮ 7
Đồng thời ta có: \(\left(n+9\right)\left(n+2\right)\) ⋮ 49 ngược lại 7 \(⋮̸\)49
Nên điểu giả sử là sai \(\Rightarrow n^2+3n+11⋮̸49\left(dpcm\right)\)
CMR với mọi số nguyên n thì (n+2)(n-2)+12 không chia hết cho 9
Ta có:(n+2)(n-2)+12
Áp dụng hàm đảng thức vào biểu thức ta được:
n^2-2^2+12=n^2-4+12=n^2+8.
Xét trường hợp n^2 chia hết cho 9 thì:
n^2+8=9k+8(k thuộc Z)
=>n^2+8 chia cho 9 dư 1.
Xét trường hợp n^2 ko chia hết cho 9 thì:
n^2+8=9h+m+8(m=1,2,3,4,5,6,7,8)
Ta xét các trường hợp m=1,2,3,4,5,6,7,8
=>m=2,3,4,5,6,7,8 thì n^2+8 ko chia hết cho 9
Và m=1 thì n^2+8 chia hết cho 9(loại)
Vậy với mọi trường hợp thì (n+2)(n-2)+12 ko chia hết cho 9 (trừ tường hợp bị loại)
CMR:
a) Với mọi số nguyên n thì n3 - n chia hết cho 3
b) Với mọi số nguyên n thì n(n-1)(2n-1) chia hết cho 6
Giải giúp mình với
a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)
Nếu \(n=3k+1\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)
Nếu \(n=3k+2\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)
Vậy \(n^3-n⋮3\forall n\in Z\)
a) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 3
b) \(n\left(n-1\right)\left(2n-1\right)=n\left(n-1\right)\left(n+1+n-2\right)=\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n\)Ta có: \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3, mà(2,3)=1 nên \(\left(n-1\right)n\left(n+1\right)⋮6\)
Tương tự ta cũng được \(\left(n-2\right)\left(n-1\right)n⋮6\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n⋮6\)
\(\Rightarrow n\left(n-1\right)\left(2n-1\right)⋮6\left(đpcm\right)\)
Chứng minh rằng với mọi số nguyên n thì (2 - n) ( n2 - 3n + 1) + n (n2 + 12 )+ 8 chia hết cho 5
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
CMR: với mọi số tự nhiên n thì n^2 + n + 1 không chia hết cho 9
ta có: n2+n+1= (n+2)(n-1) +3
ta thấy hiệu hai số: (n+2) -(n-1) =3 chia hết cho 3
suy ra:
( *) hoặc (n+2) và (n-1) cùng chia hết cho 3, khi đó (n+2)(n-1) chia hết cho 9 nhưng 3 không chia hết cho 9 , dó đó (n+2)(n-1) +3 không chia hết cho 9 hay n2+n+1 không chia hết cho 9
(**) hoặc (n+2) và (n-1) cùng không chia hết cho 3, khi đó (n+2)(n-1) ko chia hết cho 3,suy ra (n+2)(n-1) +3 ko chia hết cho 3. Mà đã không chia hết cho 3 thì đương nhiên không chia hết cho 9 rồi
------Cho 1 Đ.ú.n,g nhé