PA

CMR với mọi số nguyên n thì n4+5x2+9 không chia hết cho 121

AH
30 tháng 3 2023 lúc 18:23

Thống nhất biểu thức là $A=n^4+5n^2+9$ bạn nhé, không phải $x$.

Lời giải:
Giả sử $n^4+5n^2+9\vdots 121$

$\Rightarrow n^4+5n^2+9\vdots 11$

$\Rightarrow n^4+5n^2-11n^2+9\vdots 11$

$\Rightarrow n^4-6n^2+9\vdots 11$

$\Rightarrow (n^2-3)^2\vdots 11$

$\Rightarrow n^2-3\vdots 11$

Đặt $n^2-3=11k$ với $k$ nguyên

Khi đó: $n^4+5n^2+9=(11k+3)^2+5(11k+3)+9=121k^2+121k+33\not\vdots 121$ (trái với giả sử)

Vậy giả sử là sai. Tức là với mọi số nguyên $n$ thì $n^4+5n^2+9$ không chia hết cho $121$

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TP
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
ZZ
Xem chi tiết
MM
Xem chi tiết
LP
Xem chi tiết
LP
Xem chi tiết