cho a,b,c>0 thỏa mãn \(\sqrt{a+b+2}+\sqrt{b+c+2}+\sqrt{c+a+2}\)
cmr: \(a^2+b^2+c^2\ge3\)
Cho các số dương a, b, c thỏa mãn: a+b+c=3 và \(M=\sqrt{a^2+2ab+2b^2}+\sqrt{b^2+2bc+2c^2}+\sqrt{c^2+2ca+2a^2}\). CMR: \(M\ge3\sqrt{5}\)
\(M=\sqrt{a^2+2ab+b^2+b^2}+\sqrt{b^2+2bc+c^2+c^2}+\sqrt{c^2+2ca+a^2+a^2}\)
\(M=\sqrt{\left(a+b\right)^2+b^2}+\sqrt{\left(b^{ }+c\right)^2+c^2}+\sqrt{\left(c+a\right)^2+a^2}\)
\(M\ge\sqrt{\left(a+b+b+c+c+a\right)^2+\left(a+b+c\right)^2}\ge\sqrt{\left[2\left(a+b+c\right)\right]^2+3^2}\ge\sqrt{6^2+3^2}\ge3\sqrt{5}\)
\(dấu\)\("="xảy\) \(ra\) \(\Leftrightarrow a=b=c=1\)
Cách khác:
Áp dụng BĐT Bunhiacopxky:
$5(a^2+2ab+2b^2)=[(a+b)^2+b^2](2^2+1^2)\geq [2(a+b)+b]^2$
$\Rightarrow \sqrt{5(a^2+2ab+b^2)}\geq 2a+3b$
Tương tự với các căn thức còn lại và cộng theo vế:
$M\sqrt{5}\geq 5(a+b+c)$
$\Leftrightarrow M\geq \sqrt{5}(a+b+c)=3\sqrt{5}$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Cho a,b,c > 0 thỏa mãn \(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}=3\). Chứng minh rằng:
\(N=\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{c^4}{a^2}\ge3\)
Áp dụng \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)
\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Biết \(a,b,c\) là các số thực không âm thỏa mãn \(a^2+b^2+c^2=a+b+c\). CMR: \(\dfrac{a+1}{\sqrt{a^5+a+1}}+\dfrac{b+1}{\sqrt{b^5+b+1}}+\dfrac{c+1}{\sqrt{c^5+c+1}}\ge3\)
Cho a,b,c>0 thỏa mãn\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\). CMR
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\)
Áp dụng BĐT BSC:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)
\(=\dfrac{a+b+c}{2}\)
\(\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Cho a, b, c>0 và a+b+c\(\ge3\)
Cmr:
\(\dfrac{a^2}{a+\sqrt{bc}}+\dfrac{b^2}{b+\sqrt{ac}}+\dfrac{c^2}{c+\sqrt{ab}}\ge\dfrac{3}{2}\)
Áp dụng bđt cosi schwart ta có:
`VT>=(a+b+c)^2/(a+b+c+sqrt{ab}+sqrt{bc}+sqrt{ca})`
Dễ thấy `sqrt{ab}+sqrt{bc}+sqrt{ca}<a+b+c`
`=>VT>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2=3`
Dấu "=" `<=>a=b=c=1.`
cho a,b,c dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\).
CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\sqrt{2011}}{2}\)
\(VT\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Đặt \(\left(x,y,z\right)=\left(\sqrt{a^2+b^2},\sqrt{b^2+c^2},\sqrt{c^2+a^2}\right)\).
Ta có \(x+y+z=\sqrt{2011}\).
BĐT cần cm trở thành:
\(\dfrac{y^2+z^2-x^2}{2\sqrt{2}x}+\dfrac{z^2+x^2-y^2}{2\sqrt{2}y}+\dfrac{x^2+y^2-z^2}{2\sqrt{2}z}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
\(\Leftrightarrow\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\ge x+y+z\)
\(\Leftrightarrow\left(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{y}\right)+\left(\dfrac{y^2}{x}+\dfrac{z^2}{y}+\dfrac{x^2}{z}\right)\ge2\left(x+y+z\right)\).
Theo bđt AM - GM:
\(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{y}=\left(\dfrac{x^2}{y}+y\right)+\left(\dfrac{y^2}{z}+z\right)+\left(\dfrac{z^2}{x}+x\right)-x-y-z\ge2x+2y+2z-x-y-z=x+y+z\).
Tương tự, \(\dfrac{y^2}{x}+\dfrac{z^2}{y}+\dfrac{x^2}{z}\ge x+y+z\).
Dễ có điều phải chứng minh.
\(P\sqrt{2}\ge\dfrac{a^2}{\sqrt{b^2+c^2}}+\dfrac{b^2}{\sqrt{c^2+a^2}}+\dfrac{c^2}{\sqrt{a^2+b^2}}\)
Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2011}\\a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{z^2+x^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\)
\(\Rightarrow P2\sqrt{2}\ge\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\)
\(P4\sqrt{2}\ge\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\)
\(P2\sqrt{2}\ge\dfrac{4\left(x+y+z\right)^2}{2\left(x+y+z\right)}-\left(x+y+z\right)=x+y+z=\sqrt{2011}\)
\(\Rightarrow P\ge\dfrac{\sqrt{2011}}{2\sqrt{2}}\)
Đề sai
Cho các số dương a, b, c thỏa mãn ab+bc+ca=1.
CMR: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3+\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\).CMR
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}+\dfrac{\sqrt{bc+2a^2}}{\sqrt{1+bc-a^2}}+\dfrac{\sqrt{ca+2b^2}}{\sqrt{1+ca-b^2}}\ge2+ab+bc+ca\)
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)
\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự và cộng lại:
\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)
Cho a;b;c >0 thỏa mãn a+b+c=5 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). CMR:
\(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)