Violympic toán 9

DF

cho a,b,c dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\).

CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\sqrt{2011}}{2}\)

DF
14 tháng 1 2021 lúc 11:00

\(VT\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)

Bình luận (0)
TH
14 tháng 1 2021 lúc 11:08

Đặt \(\left(x,y,z\right)=\left(\sqrt{a^2+b^2},\sqrt{b^2+c^2},\sqrt{c^2+a^2}\right)\).

Ta có \(x+y+z=\sqrt{2011}\).

BĐT cần cm trở thành: 

\(\dfrac{y^2+z^2-x^2}{2\sqrt{2}x}+\dfrac{z^2+x^2-y^2}{2\sqrt{2}y}+\dfrac{x^2+y^2-z^2}{2\sqrt{2}z}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)

\(\Leftrightarrow\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\ge x+y+z\)

\(\Leftrightarrow\left(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{y}\right)+\left(\dfrac{y^2}{x}+\dfrac{z^2}{y}+\dfrac{x^2}{z}\right)\ge2\left(x+y+z\right)\).

Theo bđt AM - GM:

\(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{y}=\left(\dfrac{x^2}{y}+y\right)+\left(\dfrac{y^2}{z}+z\right)+\left(\dfrac{z^2}{x}+x\right)-x-y-z\ge2x+2y+2z-x-y-z=x+y+z\).

Tương tự, \(\dfrac{y^2}{x}+\dfrac{z^2}{y}+\dfrac{x^2}{z}\ge x+y+z\).

Dễ có điều phải chứng minh.

 

 

Bình luận (0)
NL
22 tháng 10 2021 lúc 19:45

\(P\sqrt{2}\ge\dfrac{a^2}{\sqrt{b^2+c^2}}+\dfrac{b^2}{\sqrt{c^2+a^2}}+\dfrac{c^2}{\sqrt{a^2+b^2}}\)

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2011}\\a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{z^2+x^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\)

\(\Rightarrow P2\sqrt{2}\ge\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\)

\(P4\sqrt{2}\ge\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\)

\(P2\sqrt{2}\ge\dfrac{4\left(x+y+z\right)^2}{2\left(x+y+z\right)}-\left(x+y+z\right)=x+y+z=\sqrt{2011}\)

\(\Rightarrow P\ge\dfrac{\sqrt{2011}}{2\sqrt{2}}\)

Đề sai

Bình luận (3)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
TT
Xem chi tiết
DF
Xem chi tiết
NH
Xem chi tiết
BA
Xem chi tiết
DF
Xem chi tiết
GB
Xem chi tiết
H24
Xem chi tiết