oxy là j
Trong mặt phẳng toạ độ Oxy, cho \(\overrightarrow i \)và \(\overrightarrow j \) là vectơ đơn vị trên trục hoành Ox và ở trên trục tung Oy
a) Tính \({\overrightarrow i ^2};{\overrightarrow j ^2};\overrightarrow i .\overrightarrow j .\)
b) Cho \(\overrightarrow u = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v = \left( {{x_2},{y_2}} \right)\). Tính tích vô hướng \(\overrightarrow u .\overrightarrow v \).
a) Ta có: \({\overrightarrow i ^2} = {\left| {\overrightarrow i } \right|^2} = 1;{\overrightarrow j ^2} = {\left| {\overrightarrow j } \right|^2};\overrightarrow i .\overrightarrow j = 0\)(vì \(\overrightarrow i \bot \overrightarrow j \) )
b) Ta có: \(\overrightarrow u .\overrightarrow v = \left( {{x_1}\overrightarrow i + {y_1}\overrightarrow j } \right).\left( {{x_2}\overrightarrow i + {y_2}\overrightarrow j } \right) = {x_1}{x_2}.{\overrightarrow i ^2} + {x_1}{y_2}.\left( {\overrightarrow i .\overrightarrow j } \right) + {y_1}{x_2}.\left( {\overrightarrow j .\overrightarrow i } \right) + {y_1}{y_2}.{\overrightarrow j ^2} = {x_1}{x_2} + {y_1}{y_2}\)
trong mặt phẳng tọa độ oxy, cho vecto a = 2 vecto i - vecto j. tọa độ của vecto a là
\(\overrightarrow{a}=\left(2;-1\right)\)
Trong mặt phẳng với hệ tọa độ vuông góc Oxy cho ba điểm I(1;1) J(-2;2) K(2;-2).Tìm tọa độ các đỉnh của hình vuông ABCD sao cho I là tâm hình vuông, J thuộc cạnh AB và K thuộc cạnh CD.
khí oxy + co2 thì sẽ ra hiện tượng j
A : nổ khí
B:nổ ống nghiệm
C: cả hai cái trên
D: ko có chuyện j cả
Trong mặt phẳng tọa độ Oxy cho \(\overrightarrow{a}=2\overrightarrow{i}\) , \(\overrightarrow{b}=-3\overrightarrow{j}\), \(\overrightarrow{c}=3\overrightarrow{i}-4\overrightarrow{j}\)
Phân tích vecto c theo hai vecto a và vecto b
Giả sử `\vec{c}=m\vec{a}+n\vec{b}`
`<=>(3;-4)=m(2;0)+n(0;-3)`
`<=>(3;-4)=(2m;-3n)`
`<=>{(m=3/2),(n=4/3):}`
`=>\vec{c}=3/2\vec{a}+4/3\vec{b}`
Trong mặt phẳng tọa độ Oxy cho A(-1;1) , B(3;3) OC = i - j a)Chứng minh rằng ba điểm A, B, C không thằng hàng. b) Tìm tọa độ điểm D sao cho ABCD là hình bình hành. Mình cảm ơn
Trong mặt phẳng với hệ tọa độ Oxy, cho parabol ( P ) : y = x 2 − 4 và parabol (P') là ảnh của (P) qua phép tịnh tiến theo v → = 0 ; b , với 0<b<4. Gọi A,B là giao điểm của (P) với Ox, M,N là giao điểm của (P') với Ox , I, J lần lượt là đỉnh của (P) và (P'). Tìm tọa độ điểm J để diện tích tam giác IAB bằng 8 lần diện tích tam giác JMN.
A. J 0 ; − 1 5 .
B. J 0 ; 1 .
C. J 0 ; − 4 5 .
D. J 0 ; − 1 .
Đáp án D
Phép tịnh tiến theo v → 0 ; b biến parabol P : y = x 2 − 4 thành parabol P ' : y = x 2 − 4 + b
Giao điểm của A,B với Ox của (P) có tọa độ lần lượt là: − 2 ; 0 , 2 ; 0
Giao điểm M,N với Ox của (P) có toạn độ lần lượt là: − 4 − b ; 0 , 4 − b ; 0
Đỉnh I,J của parabon (P), (P') có tọa độ lần lượt: 0 ; − 4 , 0 ; − 4 + b
Diện tích tam giác IAB bằng 8 lần diện tích tam giác JMN nên ta có:
I O . A B = 8 J O . M N ⇔ 4.4 = 8. 4 − b .2 4 − b ⇔ 4 − b 3 = 1 ⇔ b = 3 ⇒ J 0 ; − 1
Trong mặt phẳng tọa độ Oxy, cho hai vectơ u → = 4 ; 1 và v → = 1 ; 4 . Tìm m để vectơ a → = m . u → + v → tạo với vectơ b → = i → + j → một góc 450.
A. m = 4
B.m = -1/2
C.m = -1/4
D.m = 1/2
Ta có a → = m . u → + v → = 4 m + 1 ; m + 4 b → = i → + j → = 1 ; 1 .
Yêu cầu bài toán ⇔ cos a → , b → = cos 45 0 = 2 2
⇔ 4 m + 1 .1 + m + 4 .1 2 4 m + 1 2 + m + 4 2 = 2 2 ⇔ 5 m + 1 2 17 m 2 + 16 m + 17 = 2 2
⇔ 5 m + 1 = 17 m 2 + 16 m + 17 ⇔ m + 1 ≥ 0 25 m 2 + 50 m + 25 = 17 m 2 + 16 m + 17 ⇔ m = − 1 4 .
Chọn C.
Cho mặt cầu S : x 2 + y 2 + z 2 = 4 a 2 . Mặt cầu (S) cắt mặt phẳng (Oxy) theo đường tròn (C). Tìm tọa độ tâm J và tính bán kính r của đường tròn (C).
A. J(0;0;0), r = 4a
B. J(0;0;0), r = 2a
C. J(1;1;0), r = 2a
D. J(1;1;1), r = 2a