Những câu hỏi liên quan
PB
Xem chi tiết
CT
27 tháng 8 2019 lúc 11:11

a) Áp dụng hệ quả của định lí côsin trong tam giác ta có:

Giải bài 5 trang 99 SGK hình học 10 | Giải toán lớp 10

b) Theo định lí tổng ba góc của tam giác ta có:

A + B + C = 180º

⇒ sin A = sin [180º – (B – C)]= sin (B + C) = sinB.cos C + cosB. sinC (đpcm)

c) Theo định lí sin trong tam giác ABC, ta có:

Giải bài 5 trang 99 SGK hình học 10 | Giải toán lớp 10

Bình luận (0)
UN
Xem chi tiết
LY
Xem chi tiết
NL
27 tháng 2 2021 lúc 17:25

\(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)

\(=\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\)

\(=\dfrac{a^2+b^2+c^2}{2abc}\) (đpcm)

Bình luận (0)
NC
2 tháng 3 2021 lúc 15:33

a2 = b2 + c2 - 2bc.cosA

b2 = a2 + c2 - 2ac.cosB

c2 = a2 + b2 - 2ab.cosC

⇒ a2 + b2 + c2 = 2bc.cosA + 2ac.cosB + 2ab.cosC

⇒ VT =  \(\dfrac{2bc.cosA}{2abc}+\dfrac{2ab.cosC}{2abc}+\dfrac{2ac.cosB}{2abc}\)

⇒ VT = \(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)

Bình luận (0)
LL
Xem chi tiết
TC
14 tháng 7 2021 lúc 11:23

undefined

Bình luận (1)
KK
14 tháng 7 2021 lúc 11:26

Áp dụng hệ quả của định lý Cosin ta có:

\(\cos C=\dfrac{b^2+a^2-c^2}{2ab};\cos B=\dfrac{c^2+a^2-b^2}{2ca}\)

\(\Rightarrow b\cos C+c\cos B=b\dfrac{b^2+a^2-c^2}{2ab}+c\dfrac{c^2+a^2-b^2}{2ca}=\)

\(\dfrac{b^2+a^2-c^2}{2a}+\dfrac{c^2+a^2-b^2}{2a}=\dfrac{2a^2}{2a}=a\)

Bình luận (0)
NH
Xem chi tiết
NL
15 tháng 6 2020 lúc 23:01

\(cosA+cosB-cosC=2cos\frac{A+B}{2}.cos\frac{A-B}{2}+2sin^2\frac{C}{2}-1\)

\(=2sin\frac{C}{2}.cos\frac{A-B}{2}+2sin^2\frac{C}{2}-1\)

\(=2sin\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)-1\)

\(=2sin\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)-1\)

\(=4cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}-1\)

Bình luận (0)
PA
Xem chi tiết
AN
15 tháng 4 2017 lúc 21:28

Ta có bất phương trình tương đương:

\(\Leftrightarrow x-2\left(\cos B+\cos C\right)x+2-2\cos A\ge0\)

Ta có:

\(\Delta'=\left(\cos B+\cos C\right)^2-2+2\cos A\)

\(=4\cos^2\left(\frac{B+C}{2}\right).\cos^2\left(\frac{B-C}{2}\right)-4\sin^2\left(\frac{A}{2}\right)\)

 \(=4\sin^2\left(\frac{A}{2}\right)\left(\cos^2\left(\frac{B-C}{2}\right)-1\right)\le0\)

Bên cạnh đó ta có hệ số \(a=1>0\)

Từ đây ta suy ra điều phải chứng minh là đúng.

Bình luận (0)
HL
Xem chi tiết
PD
Xem chi tiết
NM
29 tháng 10 2021 lúc 18:06

Xét tam giác ABC nhọn có \(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos\widehat{A}\)
\(\Rightarrow\cos\widehat{A}=\dfrac{AB^2+AC^2-BC^2}{2AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4\cdot\dfrac{1}{2}AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4S_{ABC}}\)

Cmtt: \(\left\{{}\begin{matrix}\cos\widehat{B}=\dfrac{AB^2+BC^2-AC^2}{4S_{ABC}}\\\cos\widehat{C}=\dfrac{AC^2+BC^2-AB^2}{4S_{ABC}}\end{matrix}\right.\)
\(\Rightarrow\cos\widehat{A}+\cos\widehat{B}+\cos\widehat{C}\\ =\dfrac{AB^2+AC^2-BC^2+AB^2+BC^2-AC^2+AC^2+BC^2-AB^2}{4S_{ABC}}\\ =\dfrac{AB^2+AC^2+BC62}{4S_{ABC}}\)

Bình luận (0)
TT
Xem chi tiết