PB

Chứng minh rằng trong mọi tam giác ABC ta đều có:

a, a = b cosC + c cosB;

b, sinA = sinBcosC + sinCcosB;

c, ha = 2RsinBsinC.

CT
27 tháng 8 2019 lúc 11:11

a) Áp dụng hệ quả của định lí côsin trong tam giác ta có:

Giải bài 5 trang 99 SGK hình học 10 | Giải toán lớp 10

b) Theo định lí tổng ba góc của tam giác ta có:

A + B + C = 180º

⇒ sin A = sin [180º – (B – C)]= sin (B + C) = sinB.cos C + cosB. sinC (đpcm)

c) Theo định lí sin trong tam giác ABC, ta có:

Giải bài 5 trang 99 SGK hình học 10 | Giải toán lớp 10

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NA
Xem chi tiết
VA
Xem chi tiết
NQ
Xem chi tiết
PB
Xem chi tiết
PT
Xem chi tiết
LT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết