Những câu hỏi liên quan
VV
Xem chi tiết
TL
Xem chi tiết
JE
Xem chi tiết
NL
4 tháng 6 2020 lúc 0:21

ĐKXĐ: \(x\ge3\)

Khi đó \(\sqrt{2x-1}\ge\sqrt{5}>1\Rightarrow\sqrt{2x-1}-1>0\)

Đồng thời \(\sqrt{x+3}>\sqrt{x-3}\) \(\forall x\Rightarrow\sqrt{x+3}-\sqrt{x-3}>0\)

Do đó BPT tương đương:

\(\sqrt{x-3}\left(\sqrt{x+3}-\sqrt{x-3}\right)\ge\sqrt{2x-1}-1\)

\(\Leftrightarrow\sqrt{x^2-9}-x+3\ge\sqrt{2x-1}-1\)

\(\Leftrightarrow\sqrt{x^2-9}\ge x-4+\sqrt{2x-1}\)

Do \(x-4+\sqrt{2x-1}\ge3-4+\sqrt{5}>0;\forall x\ge3\) nên BPT tương đương:

\(x^2-9\ge x^2-8x+16+2x-1+2\left(x-4\right)\sqrt{2x-1}\)

\(\Leftrightarrow\left(x-4\right)\sqrt{2x-1}-3\left(x-4\right)\le0\)

\(\Leftrightarrow\left(x-4\right)\left(\sqrt{2x-1}-3\right)\le0\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{2x-1-9}{\sqrt{2x-1}+3}\right)\le0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\le0\Leftrightarrow4\le x\le5\)

Bình luận (0)
VM
Xem chi tiết
NL
Xem chi tiết
LD
28 tháng 2 2019 lúc 12:41

\(\sqrt{2x-1}\ge0\)

\(\Rightarrow BPT\ge0\) khi

\(3-2x-x^2\ge0\)

\(\Leftrightarrow x^2+2x-3\le0\)

\(\Leftrightarrow\left(x+1\right)^2-4\le0\)

\(\Leftrightarrow\left(x+1\right)^2\le4\)

\(\Leftrightarrow x+1\le2\)

\(\Rightarrow x\le1\)

Bình luận (0)
DN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
11 tháng 6 2021 lúc 7:51

`sqrt{x-2}-2>=sqrt{2x-5}-sqrt{x+1}`

`đk:x>=5/2`

`bpt<=>\sqrt{x-2}+\sqrt{x+1}>=\sqrt{2x-5}+2`

`<=>x-2+x+1+2\sqrt{(x-2)(x+1)}>=2x-5+4+4\sqrt{2x-5}`

`<=>2x-1+2\sqrt{(x-2)(x+1)}>=2x-1+4\sqrt{2x-5}`

`<=>2\sqrt{(x-2)(x+1)}>=4\sqrt{2x-5}`

`<=>sqrt{x^2-x-2}>=2sqrt{2x-5}`

`<=>x^2-x-2>=4(2x-5)`

`<=>x^2-x-2>=8x-20`

`<=>x^2-9x+18>=0`

`<=>(x-3)(x-6)>=0`

`<=>` \(\left[ \begin{array}{l}x \ge 6\\x \le 3\end{array} \right.\) 

Kết hợp đkxđ:

`=>` \(\left[ \begin{array}{l}x \ge 6\\\dfrac52 \le x \le 3\end{array} \right.\) 

Bình luận (0)
LN
Xem chi tiết