căn 11+6can2 - căn 11-căn2
Thực hiện các phép tính sau a)căn(căn5-căn2)^2+căn(căn5+căn2)^2 b)căn(căn2+1)^2-căn(căn2-5)^2
a) \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|+\left|\sqrt{5}+\sqrt{2}\right|\)
\(=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}\)
\(=\sqrt{5}+\sqrt{5}\)
\(=2\sqrt{5}\)
b) \(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}\)
\(=\left|\sqrt{2}-1\right|-\left|\sqrt{2}-5\right|\)
\(=\sqrt{2}-1-\left(5-\sqrt{2}\right)\)
\(=\sqrt{2}-1-5+\sqrt{2}\)
\(=2\sqrt{2}-6\)
So sánh :
1. 1- căn3 và căn2 - căn 6
2. căn của (4 + căn7 ) - căn của ( 4- căn7 ) - căn2 và 0
a,Ta có : \(1-\sqrt{3}\); \(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)
Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
b, Đặt A = \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)
\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)
Vậy (*) = 0
1:
Ta có: \(\sqrt{2}-\sqrt{6}\)
\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)
\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
2:
Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1-2}{\sqrt{2}}\)
=0
CMR: căn 7 -căn 6>căn 3-căn2
\(\sqrt{7}-\sqrt{6}=\frac{1}{\sqrt{7}+\sqrt{6}}< \frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\sqrt{2}\)
Vậy đề bài sai:)
M=căn x-2 căn 2 / căn x^2-4x căn 2+8 +căn x+2 căn 2/ căn x^2+4x căn2 +8
So sánh
Căn căn 3 và căn căn2
Ta có :
\(\sqrt{2}=1,41....\)
\(\sqrt{3}=1,73....\)
\(\Rightarrow\sqrt{2}< \sqrt{3}\)
\(\sqrt{3}\approx1,732....\)
\(\sqrt{2}=\approx1,414...\)
Ta so sánh các số thập phân, thấy:
1,732 > 1,414 nên:
\(\sqrt{3}>\sqrt{2}\)
B=căn ( căn5 - căn2)^2 .(căn6 - căn2 / 1- căn3 - 5/ căn5)
Rút gọn
a. 2 căn10+căn30-2 căn2-căn6/2 căn10-2 căn 2
b. căn((1-căn2006)^2) x căn(2007+2 căn2006 )
a: Ta có: \(\dfrac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}\)
\(=\dfrac{\sqrt{10}\left(2+\sqrt{3}\right)-\sqrt{2}\left(2+\sqrt{3}\right)}{2\sqrt{2}\left(\sqrt{5}-1\right)}\)
\(=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)\left(\sqrt{5}-1\right)}{2\sqrt{2}\left(\sqrt{5}-1\right)}\)
\(=\dfrac{2+\sqrt{3}}{2}\)
b) Ta có: \(\sqrt{\left(1-\sqrt{2006}\right)^2}\cdot\sqrt{2007+2\sqrt{2006}}\)
\(=\left(\sqrt{2006}-1\right)\left(\sqrt{2006}+1\right)\)
=2005
Thực hiện các phép tính sau a)căn (2căn2-3)^2 b)căn(1/căn2-1/2)^2 c)căn(0,1-căn0,1)^2
a) \(\left(2\sqrt{2}-3\right)^2\)
\(=\left(2\sqrt{2}\right)^2-2\cdot2\sqrt{2}\cdot3+3^2\)
\(=4\cdot2-12\sqrt{2}+9\)
\(=17-12\sqrt{2}\)
b) \(\sqrt{\left(\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\right)^2}\)
\(=\left|\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\right|\)
\(=\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\)
\(=\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\)
\(=\dfrac{\sqrt{2}-1}{2}\)
c) \(\sqrt{\left(0,1-\sqrt{0,1}\right)^2}\)
\(=\left|0,1-\sqrt{0,1}\right|\)
\(=0,1-\sqrt{0,1}\)
trục căn thức các biểu thức sau:
a 3/4+căn(9+4căn5)
b căn3/căn2+căn(5+2căn6)
c 3/căn5+căn7-căn2
d 1/2+căn5+2căn2+căn10