\(\dfrac{y-m}{n-3}+\dfrac{y-n}{m-3}=3-\dfrac{y+3}{m+n}\)
Tìm các số nguyên dương x, y thỏa mãn:
\(\dfrac{3}{x+y}=\dfrac{x}{y+3}=\dfrac{y}{x+3}\)
Tìm số nguyên x,y,z thỏa mãn điều kiện sau : \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}=\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}=x+y+z=3\)
Ta có : \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}=\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}\)
=> \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}=\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}\)=\(\dfrac{x+y+z}{x+y+z}=1\)
=> x=y=z
TH1: x=y=z=1=>x+y+z=3( thỏa )
TH2: x,y,z >1=>x+y+z>3 ( vô lý)
Vậy x=y=z=1
Bài 1: Tìm x; y ϵ \(ℤ\)
a) 2x - y\(\sqrt{6}\) = 5 + (x + 1)\(\sqrt{6}\)
b) 5x + y - (2x -1)\(\sqrt{7}\) = y\(\sqrt{7}\) + 2
Bài 2: So sánh M và N
M = \(\dfrac{\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{6}{4}+\dfrac{6}{5}+\dfrac{6}{7}-\dfrac{6}{11}}\)
N = \(\dfrac{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{6}{2}+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}\)
Bài 3: Chứng minh:
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
@Nguyễn Đức Trí: Đề bài nó như vậy mà
cho các số x,y,z nguyên dương thỏa mãn. CMR:
M=\(\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{x^3+z^3+1}\le1\)
1) so sánh:\(\dfrac{3^6.21^{12}}{175^9.7^3}\)và\(\dfrac{3^{10}.6^7.4}{10^9.5^8}\)
2)tìm y biết:/y-4/-12=2y
3)tìm x;y;z biết \(\dfrac{x}{5}=\dfrac{y}{-7};\dfrac{y}{4}=\dfrac{z}{15}\)và x+3y-4z=18
4)tìm n\(\in\)N :\(3^{n+2}\)+\(3^n\)=270
4) \(3^{n+2}+3^n=270\)
\(\Rightarrow3^n.3^2+3^n=270\)
\(\Rightarrow3^n.\left(3^2+1\right)=270\)
\(\Rightarrow3^n.\left(9+1\right)=270\)
\(\Rightarrow3^n.10=270\)
\(\Rightarrow3^n=270:10\)
\(\Rightarrow3^n=27\)
\(\Rightarrow3^n=3^3\)
\(\Rightarrow n=3\)
Vậy \(n=3\)
Tìm hai số x;y khác 0 thỏa mãn :
\(\dfrac{x+y}{3}=\dfrac{x-y}{\dfrac{1}{3}}=\dfrac{x\cdot y}{\dfrac{200}{3}}\)
GIÚP MK VỚI!!
tìm số tự nhiên x,y thỏa mãn \(\dfrac{5}{x}=\dfrac{1}{6}+\dfrac{y}{3}\)
Ta có: \(\dfrac{5}{x}=\dfrac{1}{6}+\dfrac{y}{3}\)
\(\Leftrightarrow\dfrac{5}{x}=\dfrac{6y+3}{18}\)
\(\Leftrightarrow3x\left(2y+1\right)=90\)
\(\Leftrightarrow x\left(2y+1\right)=30\)
Vì x,y ∈ N ⇒ x ; 2y+1∈ N
Do 2y+1 là số lẻ:2y+1 ≥ 3
Xét các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}x=2\\2y+1=15\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=7\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x=6\\2y+1=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=2\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}x=10\\2y+1=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\y=0\end{matrix}\right.\)
Vậy(x;y)∈\(\left\{\left(2;7\right);\left(6;2\right);\left(10;0\right)\right\}\)
1) Tìm các số nguyên x;y sao cho:
a) \(\dfrac{x}{2}+\dfrac{y}{3}=\dfrac{x+y}{2+3}\)
2) Tìm số nguyên x, biết:
\(\left|x-2\right|\le1\)
3) Tìm các số nguyên x;y biết:
a)\(\dfrac{x}{y-1}=\dfrac{5}{-19}\)
3)
a) \(\dfrac{x}{y-1}\)=\(\dfrac{5}{-19}\)
⇒ \(\dfrac{x}{y}\)= \(\dfrac{5}{\left(-19\right)+1}\) = \(\dfrac{5}{-18}\)
⇒ x = 5 ; y = -18.
Vậy x=5 : y= -18
Tìm các số tự nhiên x ; y thỏa mãn :
\(\dfrac{x}{2}+\dfrac{y}{3}=\dfrac{x+y}{5}\)