ΔABC cân tại A. Kẻ AH ⊥ BC ( H ∈ BC )
Cho BH = 2 cm và AB = 4cm
a) Tính AH
b) Tính chu vi ΔABC
Cho ΔABC vuông tại A, đường cao AH (H Î BC). Biết tan ABC = \(\dfrac{3}{4}\), AH = 2,4 cm. Tính BH và chu vi ΔABC.
Xét ΔAHB vuông tại H có \(tanB=\dfrac{AH}{HB}\)
=>\(\dfrac{2.4}{HB}=\dfrac{3}{4}\)
=>\(HB=2.4\cdot\dfrac{4}{3}=3,2\left(cm\right)\)
ΔABH vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(AB^2=3,2^2+2,4^2=16\)
=>\(AB=\sqrt{16}=4\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(BC=\dfrac{4^2}{3,2}=5\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-4^2=9\)
=>\(AC=\sqrt{9}=3\left(cm\right)\)
Chu vi tam giác ABC là:
3+4+5=12(cm)
Bài1:Cho ΔMNP vuông tại N. Tính độ dài MN biết MP=√30cm,NP=√14 cm
Bài2:Cho ΔABC cân tại A. Biết AB=2cm. Tính BC
Bài3:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=6cm,HB=4cm,HC=9cm
Bài4:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=4cm,HB=2cm,HC=8cm
Bài5:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=4cm,HB=2cm,HC=8cm.Tính BC,AH,AC
Bài6:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=6cm,AC=8cm và \(\dfrac{HB}{HC}\)=\(\dfrac{9}{16}\)Tính HB,HC
Bài 3:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
BC=13cm
=>\(AC=3\sqrt{13}\left(cm\right)\)
cho ΔABC cân tại A , vẽ AH ⊥ BC tại H . Biết AB = 5 cm , BC = 6 cm .
a, Chứng minh BH = HC
b, Tính đọ dài BH , AH
c, Gọi G là trọng tâm của △ABC . Chứng minh rằng A,G,H thẳng hàng
a: ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
=>HB=HC
b: HB=HC=6/2=3cm
=>AH=căn 5^2-3^2=4cm
c: G là trọng tâm của ΔABC
=>AG là trung tuyến ứng với cạnh BC trongΔABC
=>A,G,H thẳng hàng
- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2+5^2=13^2\)
\(\Rightarrow AC=12\left(cm\right)\)
- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)
=> Hai tam giác trên đồng dạng .
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)
=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)
- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)
Vậy ...
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=13^2-5^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot13=5\cdot12\)
\(\Leftrightarrow AH\cdot13=60\)
hay \(AH=\dfrac{60}{13}cm\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=5^2-\left(\dfrac{60}{13}\right)^2=\dfrac{625}{169}\)
hay \(BH=\dfrac{25}{13}cm\)
Ta có: BH+CH=BC(H nằm giữa B và C)
\(\Leftrightarrow CH=BC-BH=13-\dfrac{25}{13}\)
hay \(CH=\dfrac{144}{13}cm\)
Vậy: AC=12cm; \(AH=\dfrac{60}{13}cm\); \(BH=\dfrac{25}{13}cm\); \(CH=\dfrac{144}{13}cm\)
Cho ΔABC cân tại A, đường cao AH. Biết AB = AC = 17cm, AH = 15cm.
a) Tính BH và BC.
b) Từ B kẻ BD ⊥ AC (D ∈ AC). Chứng minh: ΔAHC ∼ ΔBDC.
c) Qua D vẽ DE ⊥ bc (E ∈ BC). Chứng minh: BE.EC = \(\dfrac{AH^2.CE^2}{CH^2}\).
c) \(\widehat{BDE}=90^0-\widehat{CDE}=\widehat{BCE}\)
\(\Rightarrow\)△BDE∼△DCE (g-g) \(\Rightarrow\dfrac{BE}{DE}=\dfrac{DE}{CE}\Rightarrow BE.CE=DE^2\left(1\right)\)
-△AHC có: AH//DE (cùng vuông góc BC) \(\Rightarrow\dfrac{DE}{AH}=\dfrac{CE}{CH}\Rightarrow DE=\dfrac{CE.AH}{CH}\Rightarrow DE^2=\dfrac{AH^2.CE^2}{CH^2}\left(2\right)\)
-Từ (1) và (2) ta có điều cần phải c/m.
Cho tam giác ABC vuông tại A , AB = 15 cm ,AC = 20 cm . Kẻ đường cao AH ( H ϵ BC )
a) C/m ΔABC đồng dạng ΔHBA
b) Tính độ dài BC , AH ,BH ,CH
c) Vẽ đường phân giác AD của góc BAC . Tính BD , DC
a)
Xét \(\Delta ABC\) và \(\Delta HBA\) có:
\(\widehat{B}:chung\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\) \(\left(ĐPCM\right)\)
b)
Áp dụng định lý Py-ta-go cho tam giác vuông ABC. Ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow15^2+20^2=BC^2\)
\(\Leftrightarrow BC=25\)
Ta có: \(\text{ΔABC ∼ ΔHBA }\) (cm câu a)
\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}=\dfrac{AB}{BH}\)
⇔ \(\dfrac{AH}{AC}=\dfrac{AB}{BC}=\dfrac{BH}{AB}\)
⇔ \(\dfrac{AH}{20}=\dfrac{15}{25}=\dfrac{BH}{15}\)
\(\Rightarrow\left\{{}\begin{matrix}AH=12\\BH=9\end{matrix}\right.\)
⇒ \(CH=BC-BH=25-9=16\)
Cho ΔABC, vẽ AH vuông góc với BC tại H. Biết BH = 9cm, CH= 16cm AH=12cm
a) Tính AB,AC b) CM: ΔABC là tam giác vuông
a, Xét Δ AHC vuông tại H, có :
\(AB^2=AH^2+HB^2\)
=> \(AB^2=12^2+9^2\)
=> \(AB^2=225\)
=> AB = 15 (cm)
Xét Δ AHC vuông tại H, có :
\(AC^2=AH^2+HC^2\)
=> \(AC^2=12^2+16^2\)
=> \(AC^2=400\)
=> AC = 20 (cm)
Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go đảo)
=> Δ ABC vuông tại A
1. Cho ΔABC vuông tại A; AB=12 cm; AC= 16cm. Kẻ đường cao AH
a)CM: ΔABH đồn dạng với Δ CHA
b) Tính BH; AH; HB; HC
c) kẻ AD là tia phân giác của góc BAC; DE là phân giác của góc ADB; DF là phân giác của góc ADC. Chứng minh: góc EFD= 90° và tính đọ dài BD, DC
d) Chứng minh: EA/EB= ED/DC= FC/FA= 1
2. CHo ΔABC có AB=6cm; AC=15cm; AH⊥ BC
a) Tính BC, AH, BH, CH
b) Kẻ AD là đường phân giác của góc ABC; BD cắt AH tại I. Chứng minh: BI.AB= BD. HB
c) Chứng minh ΔAID cân
d) Chứng minh: AI.BI= BD.IH
Cho ΔABC vuông tại B biết: BC=2a; góc A=45°: a) Tính độ dài cạnh AB; AC b) Kẻ BH vuông góc AC. Tính BH=? c) Tính diện tích ΔABC d) Tính chu vi ΔABC e) Tính bán kính đường tròn ngoại tiếp ΔABC
a: ΔBAC vuông tại B có góc A=45 độ
nên ΔBAC vuông cân tại B
=>BA=BC=2a
AC=căn AB^2+BC^2=2a*căn 2
b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2
c: S ABC=1/2*2a*2a=2a^2
d: C=2a+2a+2a*căn 2=4a+2a*căn 2
Cho ΔABC vuông tại A có AB =3cm AC =4cm, kẻ đường cao AH (H ∈ BC)
a) Tính BC.
b) So sánh \(\widehat{B}\) và \(\widehat{C}\); HB và HC.
Help me câu b).
Vì ΔABC vuông tại A
==> BC2 = AC2 +AB2 ( Định lý Pitago )
BC2 = 42 + 32
BC2 = 27
==> BC = √27
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Vậy: BC=5cm
b) Xét ΔABC có AC>AB(4cm>3cm)
mà góc đối diện với cạnh AC là \(\widehat{ABC}\)
và góc đối diện với cạnh AB là \(\widehat{ACB}\)
nên \(\widehat{B}>\widehat{C}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)