Những câu hỏi liên quan
LC
Xem chi tiết
HV
Xem chi tiết
H24
29 tháng 10 2019 lúc 9:57

Bài này hay:)

c = min {a,b,c}. Đặt

\(a-c=x;b-c=y\Rightarrow x,y\ge0\) và x + y = a + b - 2c \(=3-3c\le3\)

\(\Rightarrow a-b=x-y;c=\frac{3-x-y}{3}\)

\(a=x+c=x+\frac{3-x-y}{3}=\frac{2x-y+3}{3}\)

\(b=y+c=\frac{2y-x+3}{3}\)

Như vậy: \(K=\sqrt{4\left(2x-y+3\right)+y^2}+\sqrt{4\left(2y-x+3\right)+x^2}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)

\(=\sqrt{y^2-4y+8x+12}+\sqrt{x^2-4x+8y+12}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)

Giờ em đang bận, tối em làm tiếp!

Bình luận (0)
 Khách vãng lai đã xóa
NL
29 tháng 10 2019 lúc 13:57

\(12a+\left(b-c\right)^2=4a\left(a+b+c\right)+b^2-2bc+c^2\)

\(=4a^2+b^2+c^2+4ab+4ac+2bc-4bc\)

\(=\left(2a+b+c\right)^2-4bc\le\left(2a+b+c\right)^2\)

\(\Rightarrow\sqrt{12a+\left(b-c\right)^2}\le2a+b+c\)

Tương tự: \(\sqrt{12b+\left(a-c\right)^2}\le a+2b+c\); \(\sqrt{12c+\left(a-b\right)^2}\le a+b+2c\)

Cộng vế với vế:

\(K\le4\left(a+b+c\right)=12\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
ND
21 tháng 7 2018 lúc 8:26

Sử dụng AM-GM, ta có

\(P=\sum\sqrt{\dfrac{ab}{ab+c}}=\sum\sqrt{\dfrac{ab}{ab+c\left(a+b+c\right)}}=\sum\sqrt{\dfrac{ab}{\left(c+b\right)\left(c+a\right)}}\le\dfrac{1}{2}\sum\dfrac{a}{c+b}+\dfrac{b}{c+a}=\dfrac{3}{2}\)

Bình luận (0)
BL
Xem chi tiết
LH
Xem chi tiết
NC
Xem chi tiết
VD
Xem chi tiết
NL
9 tháng 4 2019 lúc 18:48

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1^2}{\sqrt{a}}+\frac{2^2}{\sqrt{b}}+\frac{3^2}{\sqrt{c}}\ge\frac{\left(1+2+3\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=\frac{36}{6}=6\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\frac{1}{\sqrt{a}}=\frac{2}{\sqrt{b}}=\frac{3}{\sqrt{c}}\\\sqrt{a}+\sqrt{b}+\sqrt{c}=6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a}=1\\\sqrt{b}=2\\\sqrt{c}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=4\\c=9\end{matrix}\right.\)

Bình luận (0)
NC
Xem chi tiết
DL
14 tháng 7 2015 lúc 7:34

pn oi nhieu the nay ai ma giai cho het dc

Bình luận (0)
HB
8 tháng 3 2016 lúc 10:20

bài lớp mấy mà nhìn ghê quá zật bạn..................Nhìu quá

Bình luận (0)
PV
15 tháng 3 2016 lúc 11:00

sao mà trả ời hết đc

Bình luận (0)
TD
Xem chi tiết
H24
5 tháng 8 2017 lúc 10:32

từ giả thiết ,ta có:\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\)\(\Leftrightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\)

\(\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=1\)---> thay 1= vào ...

Bình luận (2)