Chương I - Căn bậc hai. Căn bậc ba

HV

cho a b c la cac so thuc ko am thoa man a+b+c=3. tim GTLN cua K=\(\sqrt{12a+\left(b-c\right)^2}+\sqrt{12b+\left(a-c\right)^2}+\sqrt{12c+\left(a-b\right)^2}\)

H24
29 tháng 10 2019 lúc 9:57

Bài này hay:)

c = min {a,b,c}. Đặt

\(a-c=x;b-c=y\Rightarrow x,y\ge0\) và x + y = a + b - 2c \(=3-3c\le3\)

\(\Rightarrow a-b=x-y;c=\frac{3-x-y}{3}\)

\(a=x+c=x+\frac{3-x-y}{3}=\frac{2x-y+3}{3}\)

\(b=y+c=\frac{2y-x+3}{3}\)

Như vậy: \(K=\sqrt{4\left(2x-y+3\right)+y^2}+\sqrt{4\left(2y-x+3\right)+x^2}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)

\(=\sqrt{y^2-4y+8x+12}+\sqrt{x^2-4x+8y+12}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)

Giờ em đang bận, tối em làm tiếp!

Bình luận (0)
 Khách vãng lai đã xóa
NL
29 tháng 10 2019 lúc 13:57

\(12a+\left(b-c\right)^2=4a\left(a+b+c\right)+b^2-2bc+c^2\)

\(=4a^2+b^2+c^2+4ab+4ac+2bc-4bc\)

\(=\left(2a+b+c\right)^2-4bc\le\left(2a+b+c\right)^2\)

\(\Rightarrow\sqrt{12a+\left(b-c\right)^2}\le2a+b+c\)

Tương tự: \(\sqrt{12b+\left(a-c\right)^2}\le a+2b+c\); \(\sqrt{12c+\left(a-b\right)^2}\le a+b+2c\)

Cộng vế với vế:

\(K\le4\left(a+b+c\right)=12\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TD
Xem chi tiết
LH
Xem chi tiết
XC
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết
LM
Xem chi tiết
VD
Xem chi tiết
HQ
Xem chi tiết
KL
Xem chi tiết