Những câu hỏi liên quan
BM
Xem chi tiết
HN
19 tháng 8 2016 lúc 13:25

Vì a,b,c là độ dài ba cạnh của một tam giác nên ta có : 

\(\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}\) \(\Leftrightarrow\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ac>a^2\end{cases}\)  \(\Rightarrow a^2+b^2+c^2>2\left(ab+bc+ac\right)\)

Bình luận (0)
VD
Xem chi tiết
OA
Xem chi tiết
LD
18 tháng 4 2022 lúc 21:08

non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì

 

Bình luận (1)
LD
18 tháng 4 2022 lúc 21:08

đúng trẻ trâu

Bình luận (0)
DQ
Xem chi tiết
YC
Xem chi tiết
NM
11 tháng 4 2019 lúc 22:06

-Theo bất đẳng thức trong tam giác ,ta có:

a+b>c\(\Rightarrow\)ac+bc>c^2

b+c>a\(\Rightarrow\)ba+ca>a^2

c+a>b\(\Rightarrow\)cb+ab>b^2

\(\Rightarrow\)ac+bc+ba+ca+cb+ab>a^2+b^2+c^2

\(\Rightarrow\)2(ab+bc+ca)>a^2+b^2+c^2

Bình luận (0)
H24
Xem chi tiết
NL
30 tháng 7 2021 lúc 12:11

a.

\(\Delta=\left(a^2+b^2-c^2\right)^2-4a^2b^2=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)

\(=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)

Do a;b;c là độ dài 3 cạnh của 1 tam giác nên:

\(\left\{{}\begin{matrix}a< b+c\Rightarrow a-b-c< 0\\a+c>b\Rightarrow a-b+c>0\\a+b>c\Rightarrow a+b-c>0\end{matrix}\right.\)

\(\Rightarrow\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\)

\(\Rightarrow\Delta< 0\)

\(\Rightarrow\) Phương trình vô nghiệm

Đề bài sai

Bình luận (0)
NL
30 tháng 7 2021 lúc 12:13

b.

\(\Delta=\left(a+b+c\right)^2-4\left(ab+bc+ca\right)\)

\(=a^2+b^2+c^2-2ab-2bc-2ca\)

Do a;b;c là độ dài 3 cạnh của 1 tam giác nên:

\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2ab+2bc+2ca\)

\(\Rightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)

\(\Rightarrow\Delta< 0\)

\(\Rightarrow\) Phương trình vô nghiệm

Đề bài sai

Bình luận (0)
VT
Xem chi tiết
LF
2 tháng 10 2017 lúc 18:29

Theo BĐT tam giác ta có:

\(\left\{{}\begin{matrix}a< b+c\\b< a+c\\c< a+b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Bình luận (0)
HT
Xem chi tiết
NL
27 tháng 7 2021 lúc 21:31

Đặt \(P=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Ta có:

\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\dfrac{\sqrt{2}}{2}\left(a+b\right)\)

Tương tự và cộng lại ta được BĐT bên trái

Dấu "=" xảy ra khi \(a=b=c\)

Bên phải:

Áp dụng BĐT Bunhiacopxki:

\(P^2\le3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)=6\left(a^2+b^2+c^2\right)\)

Mặt khác do a;b;c là 3 cạnh của 1 tam giác:

\(\Rightarrow\left\{{}\begin{matrix}a+b>c\\a+c>b\\b+c>a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ac+bc>c^2\\ab+bc>b^2\\ab+ac>c^2\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)< 6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2\le3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2< 3\left(a+b+c\right)^2\Rightarrow P< \sqrt{3}\left(a+b+c\right)\)

Bình luận (2)
CA
Xem chi tiết