\(x^4-18x^2+81=0\)
Tìm xx:
x^2+ 18x = -81x2+18x=−81
Rút gọn : \(\frac{3}{x^2+6x+6}+\frac{3}{6x-x^2-9}+\frac{x^2+30x-27}{x^4-18x^2+81}\)
Sửa đề: \(\dfrac{3}{x^2+6x+9}-\dfrac{3}{x^2-6x+9}+\dfrac{x^2+30x-27}{x^4-18x^2+81}\)
\(=\dfrac{3x^2-18x+27-3x^2-18x-27+x^2+30x-27}{\left(x+3\right)^2\cdot\left(x-3\right)^2}\)
\(=\dfrac{x^2-6x-27}{\left(x+3\right)^2\cdot\left(x-3\right)^2}=\dfrac{\left(x-9\right)\left(x+3\right)}{\left(x+3\right)^2\cdot\left(x-3\right)^2}\)
\(=\dfrac{\left(x-9\right)}{\left(x^2-9\right)\left(x-3\right)}\)
Tính
\(\dfrac{3}{x^2+6x+9_{ }}+\dfrac{2}{6x-x-9}+\dfrac{x^2+30x-27}{x^4-18x^2+81}\)
Akai Haruma Nguyễn Huy Tú Nguyễn Huy ThắngHồng Phúc NguyễnPhạm Hoàng Giang......và nhiều bạn nữa giúp mik vs
\(\dfrac{3}{x^2+6x+9}+\dfrac{2}{6x-x^2-9}+\dfrac{x^2+30x-27}{x^4-18x^2+81}\)
\(=\dfrac{3}{\left(x+3\right)^2}+\dfrac{-2}{\left(x-3\right)^2}+\dfrac{x^2+30x-27}{x^4-9x^2-9x^2+81}\)
\(=\dfrac{3}{\left(x+3\right)^2}-\dfrac{2}{\left(x-3\right)^2}+\dfrac{x^2+30x-27}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{3\left(x-3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}-\dfrac{2\left(x+3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}+\dfrac{x^2+30x-27}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{3x^2-18x+27-2x^2-12x-18+x^2+30x-27}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{2x^2-18}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{2\left(x^2-9\right)}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{2}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x^2-9}\)
B = 8xy - 6x2 / 3y ( 3x - 4y)
C = 2x3 - 18x / x4 - 81
B = \(\frac{8xy-6x^2}{3y\left(3x-4y\right)}=\frac{2x\left(4y-3x\right)}{-3y\left(4y-3x\right)}=-\frac{2x}{3y}\)
C = \(\frac{2x^3-18x}{x^4-81}=\frac{2x\left(x^2-9\right)}{\left(x^2-9\right)\left(x^2+9\right)}=\frac{2x}{x^2+9}\)
Rút gọn phân thức sau:
B=\(\dfrac{2x^2-18x}{x^4-81}\)
\(B=\dfrac{2x^2-18x}{x^4-81}=\dfrac{2\left(x^2-9\right)}{x^4-81}=\dfrac{2\left(x-3\right)\left(x+3\right)}{\left(x^2-9\right)\left(x^2+9\right)}=\dfrac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x^2+9\right)}=\dfrac{2}{x^2+9}\)
Cho mình sửa,vừa nãy gõ thiếu chữ x:V
\(B=\dfrac{2x^2-18x}{x^4-81}=\dfrac{2\left(x^2-9x\right)}{x^4-81}=\dfrac{2\left(x-3\right)\left(x+3\right)}{\left(x^2-9\right)\left(x^2+9\right)}=\dfrac{2\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)\left(x^2+9\right)}=\dfrac{2}{x^2+9}\)
Giải các phương trình sau
a) \(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)
b)\(\sqrt{18x+9}-\sqrt{8x+4}+\frac{1}{3}\sqrt{2x+1}=4\)
a, ĐK :a >= 3
\(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{\left(a-3\right)\left(a+3\right)}+6\sqrt{\left(a-3\right)\left(a+3\right)}=0\)
\(\Leftrightarrow\sqrt{a-3}\left(5-\frac{14}{3}-\sqrt{a+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{a-3}=0\\\sqrt{a+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{2}{9}\left(loai\right)\end{cases}}\)
b, \(ĐK:x\ge-\frac{1}{2}\)
\(\Leftrightarrow3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow\frac{4}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow\sqrt{2x+1}=3\)
\(\Leftrightarrow x=4\left(tm\right)\)
a) đk: \(a\ge3\)
pt \(\Leftrightarrow25\frac{\sqrt{a-3}}{\sqrt{25}}-7\frac{\sqrt{4\left(a-3\right)}}{\sqrt{9}}-7\sqrt{a^2-9}+18\frac{\sqrt{9\left(a^2-9\right)}}{\sqrt{81}}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{7.2}{3}\sqrt{a-3}-7\sqrt{a^2-9}+\frac{18.3}{9}\sqrt{a^2-9}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{a^2-9}+6\sqrt{a^2-9}=0\)
\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}-\sqrt{a^2-9}=0\)
\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}=\sqrt{a^2-9}\)
\(\Leftrightarrow\frac{1}{9}\left(a-3\right)=a^2-9\)
\(\Leftrightarrow a^2-\frac{1}{9}a-\frac{26}{3}=0\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{26}{9}\left(loại\right)\end{cases}}\)
x^4 - 13x^2 + 18x - 5 = 0
Viết theo mẫu : A^2+2ab +B=(A+B)^2
a) x^2 + 2x +1
b)x^2 + 8x+16
c) x^2 +6x +9
d)4x^2+4x+1
e) 36+ x^2 - 12x
f) 4x^2 + 12x +9
g) x^4 +81 +18x^2
h) 9x^2 + 30xy + 25y^2
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+8x+16=\left(x+4\right)^2\)
c) \(x^2+6x+9=\left(x+3\right)^2\)
d) \(4x^2+4x+1=\left(2x+1\right)^2\)
e) \(36+x^2-12x=x^2-12x+36=\left(x-6\right)^2\)
f) \(4x^2+12x+9=\left(2x+3\right)^2\)
g) \(x^4+81+18x^2=x^4+18x^2+81=\left(x^2+9\right)^2\)
h) \(9x^2+30xy+25y^2=\left(3x+5y\right)^2\)
a, \(x^2\) + 2\(x\) + 1 = (\(x\) + 1)2
b, \(x^2\) + 8\(x\) + 16 = (\(x\) + 4)2
c, \(x^2\) + 6\(x\) + 9 = (\(x\) + 3)2
d, 4\(x^2\) + 4\(x\) + 1 = (2\(x\) + 1)2
tim x,y thỏa mãn:x^2y^4-18x^2y^2+85x^2+3y^4-54y^2+243=0