cho B=x^5/30-x^3/6+2x/15. CMR B luôn nhận giá trị nguyên khác 17 với mọi giá trị nguyên của x
Cho đa thức: \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\). CM: B luôn nhận giá trị nguyên khác 17 với mọi giá trị nguyên của x
\(B=\dfrac{x^5-5x^3+4x}{30}=\dfrac{x\left(x^4-5x^2+4\right)}{30}=\dfrac{x\left(x^2-1\right)\left(x^2-4\right)}{30}=\dfrac{x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)}{30}=\dfrac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}\).
Xét x nguyên. Trong 5 số x - 2, x - 1, x, x + 1, x + 2 tồn tại 1 số chia hết cho 2, 1 số chia hết cho 3, 1 số chia hết cho 5.
Do đó (x - 2)(x - 1)x(x + 1)(x + 2) luôn nguyên với mọi x nguyên.
Mặt khác tồn tại 2 số trong 5 số x - 2, x - 1, x, x + 1, x + 2 chia hết cho 2 mà 30 chia hết cho 2 nhưng không chia hết cho 4 nên B chia hết cho 2.
Vậy B khác 17 với mọi x nguyên.
Cho các đa thức: \(A=x-5x^2+8x-4\)
\(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)
a) Phân tích A, B thành nhân tử
b) CM: B luôn nhận giá trị nguyên khác 17 với mọi giá trị nguyên của x
x đầu ở đa thức A là x^3 chăng?
a/ \(A=x^3-5x^2+8x-4\)
\(=\left(x^3-x^2\right)+\left(-4x^2+4\right)+\left(8x-8\right)\)
\(=x^2\left(x-1\right)-4\left(x-1\right)\left(x+1\right)+8\)
\(=\left(x-1\right)\left(x^2-4x-4\right)=\left(x-1\right)\left(x-2\right)^2\)
b/ \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)
\(=\dfrac{x^5}{30}-\dfrac{5x^3}{30}+\dfrac{4x}{30}\)
\(=\dfrac{x\left(x^4-5x^2+4\right)}{30}\)
\(=\dfrac{x\left(x^4-x^2-4x^2+4\right)}{30}\)
\(=\dfrac{x\left(x+2\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)}{30}\)
a) Cho đa thức f(x) với hệ số nguyên biết f(x) có giá trị bằng 2017 tại 5 giá trị nguyên khác nhau của x. CMR: f(x) không thể nhận giá trị 2007 với mọi số nguyên x.
b) Tìm số nguyên tố p sao cho 2p+1 là lập phương của một số tự nhiên
Cho x là số nguyên.CMR
\(M=\frac{x^5}{30}-\frac{x^3}{6}+\frac{2x}{15}\)luôn nhận giá trị nguyên
\(M=\frac{x^5}{30}-\frac{x^3}{6}+\frac{2x}{15}\)
\(=\frac{x^5}{30}-\frac{5x^3}{30}+\frac{4x}{30}\)
\(=\frac{x^5-5x^3+4x}{30}\)
\(=\frac{x\left(x^4-5x^2+4\right)}{30}\)
\(=\frac{x\left[\left(x^4-4x^2\right)-\left(x^2-4\right)\right]}{30}\)
\(=\frac{x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]}{30}\)
\(=\frac{x\left(x^2-1\right)\left(x^2-4\right)}{30}\)
\(=\frac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}\)
\(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\) là tích của 5 số tự nguyên liên tiếp nên chia hết cho 2 , 3 , 5.
Mà các số 2 , 3 , 5 nguyên tố với nhau từng đôi một nên \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\)chia hết cho 2 . 3 .5 = 30
Do đó \(M\in Z\)
Vậy....
Cho M =3x^2y+4x^2y+\(\frac{1}{2}\)+x^2y
1)tìm cặp số nguyên (x;y) để M=240
2)chứng minh M và 2x^2y^3 cung dấu với mọi x;y khác 0
3) C/M M và -2x^4 khác dấu với mọi x khác 0
4) C/M 2x^4y^3 và -4xy ít nhất có một đơn thức có giá trị âm với mọi x,y khác 0
5)C/M M-2x^4y^3 và -4xy ít nhất có 1 đơn thức có giá trị dương với mọi x,y khác 0
6)tìm số h để kx^2y^2 và 2My nhận giá trị
a) âm với mọi x,y khác 0
b) dương vói mọi x,y khác 0
7) tìm giá trị nhỏ nhất của M+2
8) tìm giá trị lớn nhất của -M+2
9)tìm số tự nhiên A biêt \(\frac{15}{6}x^2y+\frac{15}{12}x^2y+\frac{15}{30}x^2y+.......+\frac{15}{a-\left(a+1\right)}\)
Cho B=(x/x+3+2x-9/2x-9-3/3-x) và C=x+3/x với x khác 3,x khác -3 và x khác 0
a)Rút gọn biểu thức D=B.C
b)Tính giá trị nguyên của x để D nhận giá trị nguyên
a: \(D=B\cdot C\)
\(=\left(\dfrac{x}{x+3}+\dfrac{2x-9}{x^2-9}+\dfrac{3}{x-3}\right)\cdot\dfrac{x+3}{x}\)
\(=\dfrac{x^2-3x+2x-9+3x+9}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}\)
\(=\dfrac{x^2+2x}{x-3}\cdot\dfrac{1}{x}=\dfrac{x+2}{x-3}\)
b: Để D nguyên thì \(x-3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{4;2;8;-2\right\}\)
Cho đa thức : f(x)=x(x^19-x^5-x^2018) và g(x)= x^2019-x^2020+9+(x^4+x^2+2)
1)Tính k(x)=f(x)+g(x)
2)Tính giá trị của k(x) tại x bằng \(\left(2-\frac{5}{3}+\frac{7}{6}-\frac{9}{10}+\frac{11}{15}-\frac{13}{21}+\frac{15}{28}-\frac{17}{36}+\frac{19}{45}\right)\cdot\frac{5}{6}\)
3) CMR k(x) không nhận giá trị 2019 với mọi giá trị nguyên x
cho hai biểu thức A=(x/x+3+2x-9/x^2-9-3/3-x) và B=x+3/x với x khác cộng trừ 3,x khác 0
a)tìm giá trị của biểu thức b tại x=-4
b) rút gọn biểu thức P=A-B
c)tìm giá trị nguyên của x để biểu thức p nhận giá trị nguyên
a: Thay x=-4 vào B, ta được:
\(B=\dfrac{-4+3}{-4}=\dfrac{-1}{-4}=\dfrac{1}{4}\)
b: \(P=A\cdot B=\dfrac{x^2-3x+2x-9+3x+9}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}\)
\(=\dfrac{x^2+2x}{\left(x-3\right)}\cdot\dfrac{1}{x}=\dfrac{x+2}{x-3}\)
c: Để P nguyên thì \(x-3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{4;2;8;-2\right\}\)
cho đa thức P(x) bậc 5 có hệ số nguyên biết P(x) nhận giá trị 1987 với 4 giá trị khác nhau của x. CMR: với mọi x thuộc Z thì P(x) không thể có giá trị bằng 2004