Những câu hỏi liên quan
BB
Xem chi tiết
CH
Xem chi tiết
H24
1 tháng 2 2022 lúc 12:42
Bình luận (0)
 Khách vãng lai đã xóa
NH
21 tháng 2 2022 lúc 19:58

a) Vì AH, HB, AB đều là các đường kính của các nửa đường tròn (O1) , (O2) và (O) nên tứ giác MPHQ có ba góc P, Q, M vuông. Vì vậy nó là hình chữ nhật.

Từ đó, ta có HM = PQ.
b) Vì MHPQ là hình chữ nhật nên \widehat{MPQ}=\widehat{MHQ}=\widehat{MBH}\left(=\dfrac{\stackrel\frown{HQ}}{2}\right), do đó APQB là tứ giác nội tiếp.

c) Ta có \widehat{O_1PA}=\widehat{PAO_1}=90^o-\widehat{HMP}=90^o-\widehat{MPQ}

\Rightarrow\widehat{O_1PA}+\widehat{MPQ}=90^o\Rightarrow\widehat{O_1PQ}=90^o nên PQ tiếp xúc nửa đường tròn (O1) tại P. 

Tương tự , PQ tiếp xúc (O2) tại Q hay PQ là tiếp tuyến chung của hai nửa đường tròn (O1) và (O2)

Bình luận (0)
 Khách vãng lai đã xóa
BC
21 tháng 2 2022 lúc 22:10

 

 

a,Xét (O1) có góc APH nội tiếp chắn nửa đtròn

⇒ góc APH = 90

Mà góc APH + góc MPH = 190( 2 góc kề bù)

⇒ góc MPH = 90 (1)

Xét (O2) có góc HQB nội tiếp chắn nửa đtròn

⇒ góc HQB = 90

Mà góc HQB + gócHQM   = 190( 2 góc kề bù)

⇒ góc HQM = 90 (2)

Xét (O) có góc AMB nội tiếp chắn nửa đtròn

⇒ góc AMB = 90 hay góc PMQ = 90 (3)

Từ 1 2 3 ⇒ tg PMQH là hcn ( tg có 3 góc vuông)

⇒MH = PQ

b, Xét tg APQB 

Có góc APH =90 (cmt)

      góc HQB =90(cmt)

 ⇒ góc APH = góc HQB = 90

Nên tg APQB nt ( tg có 2 định P và Q kề nhau cùng nhìn cạnh AB dưới những góc bằng nhau bằng 90)

c, Ta có: góc O1PA = góc PAO1

                               = 90 - góc HMP

                               = 90 - góc MPQ

⇒ góc O1PA +góc MPQ=90

⇒ O1PQ = 90

⇒ PQ⊥ PO1

    P tx với nửa đtròn tại p

⇒PQ là tiếp tuyến (O1)

CM tương tự có PQ là tt (O2)

⇒ PQ là tt chung của 2 đtròn O1 và O2

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
NT
9 tháng 5 2023 lúc 13:35

a: góc BEC=1/2*180=90 độ

=>CE vuông góc AB

góc BDC=1/2*180=90 độ

=>BD vuông góc AC

góc AEH=góc ADH=90 độ

=>AEHD nội tiếp

b:

Gọi K là trung điểm của AH

=>K là tâm đường tròn ngoại tiếp tứ giác ADHE

góc KDO=góc KDH+góc ODH

=góc KHD+góc OBD

=90 độ

=>OD là tiếp tuyến của (K)

Bình luận (0)
3T
Xem chi tiết
NT
27 tháng 7 2023 lúc 21:40

a: góc CAO+góc CMO=180 độ

=>CAOM nội tiếp

góc DMO+góc DBO=180 độ

=>DMOB nội tiếp

b: Xét (O) có

CM,CA là tiếp tuyến

=>CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc DOC=1/2*180=90 độ

Xét ΔDOC vuông tại O có OM là đường cao

nên CM*MD=OM^2

=>AC*BD=R^2

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 5 2018 lúc 7:52

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 9 2017 lúc 6:38

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

∆ ACB nội tiếp trong đường tròn (O) có AB là đường kính nên  ∆ ABC vuông tại C

CO = OA = (1/2)AB (tính chất tam giác vuông)

AC = AO (bán kính đường tròn (A))

Suy ra: AC = AO = OC

∆ ACO đều góc AOC = 60 °

∆ ADB nội tiếp trong đường tròn đường kính AB nên  ∆ ADB vuông tại D

DO = OB = OA = (1/2)AB (tính chất tam giác vuông)

BD = BO(bán kính đường tròn (B))

Suy ra: BO = OD = BD

∆ BOD đều

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 1 2019 lúc 18:28

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 7 2019 lúc 2:12

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Mà AD, CO là hai đường chéo của hình thoi AODC nên AD vuông góc với OC

Bình luận (0)
AP
Xem chi tiết
PB
Xem chi tiết
CT
21 tháng 7 2019 lúc 8:39

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong đường tròn (O) ta có:

góc ADC = góc ABC (2 góc nội tiếp cùng chắn cung AC

Bình luận (0)