Ôn thi vào 10

3T

Cho nửa đường tròn (O;R) đường kính AB. Trên cùng nửa mặt phẳng bờ AB chứa nửa đường tròn (O;R) vẽ các tiếp tuyến Ax, By với nửa đường tròn (O;R).Gọi M là 1 điểm bất kì trên nửa đường tròn (O;R) ,(M≠A;M≠B) Tiếp tuyến của nửa đường tròn tại M cắt Ax,By lần lượt tại C và D

a) Chứng minh tứ giác ACMO nội tiếp , tứ giác OMDN nội tiếp

 b) Chứng minh AC.BD=R²

c) Kẻ MN vuông góc AB (N thuộc AB) ; BC cắt MN tại I . Chứng minh I là trung điểm của MN

NT
27 tháng 7 2023 lúc 21:40

a: góc CAO+góc CMO=180 độ

=>CAOM nội tiếp

góc DMO+góc DBO=180 độ

=>DMOB nội tiếp

b: Xét (O) có

CM,CA là tiếp tuyến

=>CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc DOC=1/2*180=90 độ

Xét ΔDOC vuông tại O có OM là đường cao

nên CM*MD=OM^2

=>AC*BD=R^2

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
HL
Xem chi tiết
DL
Xem chi tiết
TN
Xem chi tiết
18
Xem chi tiết
AQ
Xem chi tiết
H24
Xem chi tiết
DP
Xem chi tiết
NL
Xem chi tiết