chứng minh rằng (22020 - 22017) :. 7
1) Chứng minh rằng: 32022 + 32020 – 22020 - 22020 chia hết cho 10
Lời giải:
$3^{2022}+3^{2020}-(2^{2020}+2^{2020})$
$=3^{2020}(3^2+1)-2.2^{2020}=10.3^{2020}-2^{2021}$
Ta thấy: $10.3^{2020}\vdots 10$, còn $2^{2021}\not\vdots 10$ nên $10.3^{2020}-2^{2021}\not\vdots 10$
Bạn xem lại đề.
chứng minh rằng ( 8.32021+ 22020 ) \(⋮\) 100
+) Ta có \(2^{20}=\left(2^{10}\right)^2=1024^2=\overline{...76}\).
Ta thấy \(\overline{...76}.\overline{...76}=\overline{...76}\).
Do đó \(2^{2020}=\left(2^{20}\right)^{101}=\overline{...76}\).
+) Ta có \(3^{20}=\left(3^{10}\right)^2=\left(59049\right)^2=\overline{...01}\).
Ta thấy \(\overline{...01}.\overline{...01}=\overline{...01}\).
Do dó \(8.3^{2021}=\left(3^{20}\right)^{101}.24=\overline{...01}.24=\overline{...24}\).
Vậy \(8.3^{2021}+2^{2020}=\overline{...76}+\overline{...24}=\overline{...00}⋮100\).
1, Cho số a = 82017 . 253024. Hỏi số a có bao nhiêu chữ số?
2, Tìm dư của phép chia số a = 22020 cho số b = 1+2+22+23+...+22017
Chứng minh rằng : 22020 - 22016 chia hết cho 15
1, Cho số a = 82017 . 253024. Hỏi số a có bao nhiêu chữ số?
2, Tìm dư của phép chia số a = 22020 cho số b = 1+2+22+23+...+22017
a) Chứng minh: A = 21 +22 +23 +24 +...+ 22020 chia hết cho 3; và 7.
b) Chứng minh: B =31 +32 +33 +34 +...+22022 chia hết cho 4 và 13.
Câu 1:
$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$
$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$
$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$
-----------------
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$
$=2+7(2^2+2^5+...+2^{2018})$
$\Rightarrow A$ chia $7$ dư $2$.
Câu 2:
$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$
$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$
-------------------
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$
$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)
Cho A=1+22+24+...+22020+22022; B=22023. Chứng minh rằng 3A và 2B là hai số tự nhiên liên tiếp.
CẦN TRC 7H SÁNG MAI Ạ
TK :
ta có 4A= 22 + 24 + 26 + 28 + ....+ 22024
từ đó 3A = 4A - A = 22 + 24 + .... + 22024 - 1 + 22 + .... + 22022 = 22024 - 1
mà 2B = 22024
Từ đó dễ dàng suy ra được 3A và 2B là 2 số liên tiếp.
Cho A =2+22+23+.....+22020+22021+22022
CHỨNG TỎ rằng A chia hết cho3
\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)
Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)
nên \(A⋮3\).
\(Toru\)
A=(2+22)+22(2+22)+...+22020(2+22)
A= 6.1+22.6+...+22020.6
A=6(1+22+...+22020) chia hết cho 3
vậy A chia hết cho 3
A=(2+22)+(23+24)+(25+26)+.......+(22019+22020)+(22021+22022)
A=2.(1+2)+23.(1+2)+25.(1+2)+.......+22019.(1+2)+22021.(1+2)
A=2.3+23.3+25.3+.......+22019.3+22021.3
A=3.(2+23+25+........+22019+22021)
Vì 3⋮3⇒A⋮3
A=1+2+22+...+22020 +22021 và B= 22022 chứng minh Avà B là số tự nhiên liên tiếp
\(A=1+2+2^2+...+2^{2020}+2^{2021}\\ \Rightarrow2A=2+2^2+2^3+...+2^{2021}+2^{2022}\\ \Rightarrow2A-A=A=2^{2022}-1\)
Vậy \(A\) và \(B\) là 2 số tự nhiên liên tiếp.
A=1+22+24...+22020 +22022 và B= 22023 chứng minh 3A và 2B là số tự nhiên liên tiếp
4A=2^2+2^4+...+2^2024
=>3A=2^2024-1
2B=2^2024
=>3A và 2B là hai số tự nhiên liên tiếp