Những câu hỏi liên quan
TT
Xem chi tiết
NT
7 tháng 2 2021 lúc 20:52

Ta có: \(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\dfrac{\left(x^3+y^3\right)\left(x^3+y^3\right)}{x\left(x^3+y^3\right)\left(x^3-y^3\right)}\)

\(=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)

\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)

Bình luận (0)
NH
7 tháng 2 2021 lúc 20:55

\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}=\dfrac{x^2-xy+y^2}{x^3+xy^2-x^2y-y^3}\)

Bình luận (1)
CY
Xem chi tiết
NM
22 tháng 2 2020 lúc 20:04

tôi cũng cung thiên yết nè nhưng lại là cậu bé mà thiên yết hợp với cung gì nhất vậy add friend nha

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
TL
Xem chi tiết
BH
2 tháng 12 2017 lúc 9:16

Điều kiện \(x\ne\pm3;y\ne-2\):

 \(P=\frac{2x+3y}{xy+2x-3y-6}-\frac{6-xy}{xy+2x+3y+6}-\frac{x^2+9}{x^2-9}.\)

=> \(P=\frac{2x+3y}{\left(y+2\right)\left(x-3\right)}-\frac{6-xy}{\left(y+2\right)\left(x+3\right)}-\frac{x^2+9}{\left(x-3\right)\left(x+3\right)}\)

\(P=\frac{\left(2x+3y\right)\left(x+3\right)-\left(6-xy\right)\left(x-3\right)-\left(x^2+9\right)\left(y+2\right)}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)

\(P=\frac{2x^2+3xy+6x+9y-6x+x^2y+18-3xy-x^2y-9y-2x^2-18}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)

\(P=\frac{0}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}=0\)

=> P=0 (với mọi x khác 3, -3 và y khác -2)

Bình luận (0)
TN
Xem chi tiết
NT
30 tháng 1 2024 lúc 21:05

\(\dfrac{2a\cdot x^2-4ax+2a}{5b-5bx^2}\)

\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)

\(=\dfrac{-2a\left(x-1\right)^2}{5b\left(x-1\right)\left(x+1\right)}=\dfrac{-2a\left(x-1\right)}{5b\left(x+1\right)}\)

\(\dfrac{4x^2-4xy}{5x^3-5x^2y}\)

\(=\dfrac{4x\cdot x-4x\cdot y}{5x^2\cdot x-5x^2\cdot y}\)

\(=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)

\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)

\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}\)

=x+y-z

\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3+y^3\right)\left(x^3-y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)

Bình luận (0)
NA
Xem chi tiết
LD
29 tháng 10 2020 lúc 15:48

\(\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)( ĐKXĐ tự tìm nhé *)

\(=\frac{\left(x^3\right)^2+2x^3y^3+\left(y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\frac{\left(x^3+y^3\right)^2}{x\left[\left(x^3\right)^2-\left(y^3\right)^2\right]}\)

\(=\frac{\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}\)

\(=\frac{\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)}\)

\(=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^3+y^3}{x\left(x^3-y^3\right)}=\frac{x^3+y^3}{x^4-xy^3}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
5 tháng 12 2021 lúc 13:46

b: \(=\dfrac{\left(x+3\right)^2-y^2}{2\left(x-y+3\right)}\)

\(=\dfrac{\left(x+3+y\right)\left(x+3-y\right)}{2\left(x-y+3\right)}=\dfrac{x+y+3}{2}\)

Bình luận (0)
PQ
Xem chi tiết
NT
29 tháng 7 2021 lúc 20:18

Bài 1: 

\(\dfrac{x^2-3}{x+\sqrt{3}}=\dfrac{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}{x+\sqrt{3}}=x-\sqrt{3}\)

Bài 2: 

a) Ta có: \(A=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\)

\(=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)

\(=4\sqrt{x+1}\)

b) Để A=16 thì \(\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

hay x=15

Bình luận (0)
TG
29 tháng 7 2021 lúc 20:19

Viết latex cho dễ hiểu bn ơi

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 1 2024 lúc 18:57

Bài 1:

a: ĐKXĐ: \(x+4\ne0\)

=>\(x\ne-4\)

b: ĐKXĐ: \(2x-1\ne0\)

=>\(2x\ne1\)

=>\(x\ne\dfrac{1}{2}\)

c: ĐKXĐ: \(x\left(y-3\right)\ne0\)

=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)

d: ĐKXĐ: \(x^2-4y^2\ne0\)

=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)

=>\(x\ne\pm2y\)

e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)

=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)

 Bài 2:

a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)

b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)

\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)

\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)

\(=\dfrac{x+y}{x-y}\)

c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)

\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)

\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)

\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)

\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)

e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)

\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)

\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)

g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)

\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)

\(=\dfrac{x+4}{x+2}\)

 

Bình luận (0)