Những câu hỏi liên quan
HP
Xem chi tiết
AH
27 tháng 4 2023 lúc 19:11

Bài 1:

a. 

$(4x^2+4x+1)-x^2=0$

$\Leftrightarrow (2x+1)^2-x^2=0$

$\Leftrightarrow (2x+1-x)(2x+1+x)=0$

$\Leftrightarrow (x+1)(3x+1)=0$

$\Rightarrow x+1=0$ hoặc $3x+1=0$

$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$

b.

$x^2-2x+1=4$

$\Leftrightarrow (x-1)^2=2^2$

$\Leftrightarrow (x-1)^2-2^2=0$

$\Leftrightarrow (x-1-2)(x-1+2)=0$

$\Leftrightarrow (x-3)(x+1)=0$

$\Leftrightarrow x-3=0$ hoặc $x+1=0$

$\Leftrightarrow x=3$ hoặc $x=-1$

c.

$x^2-5x+6=0$

$\Leftrightarrow (x^2-2x)-(3x-6)=0$

$\Leftrightarrow x(x-2)-3(x-2)=0$

$\Leftrightarrow (x-2)(x-3)=0$

$\Leftrightarrow x-2=0$ hoặc $x-3=0$

$\Leftrightarrow x=2$ hoặc $x=3$

 

Bình luận (0)
AH
27 tháng 4 2023 lúc 19:16

2c.

ĐKXĐ: $x\neq 0$

PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$

$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$

$\Leftrightarrow x=-4$ (tm)

2d.

ĐKXĐ: $x\neq 2$

PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$

$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$

$\Rightarrow 3x-5=3-x$

$\Leftrightarrow 4x=8$

$\Leftrightarrow x=2$ (không tm) 

Vậy pt vô nghiệm.

Bình luận (0)
AH
27 tháng 4 2023 lúc 19:21

2f.

ĐKXĐ: $x\neq \pm 2$

PT $\Leftrightarrow \frac{(x-2)^2-3(x+2)}{(x+2)(x-2)}=\frac{2(x-11)}{(x-2)(x+2)}$

$\Rightarrow (x-2)^2-3(x+2)=2(x-11)$

$\Leftrightarrow x^2-4x+4-3x-6=2x-22$

$\Leftrightarrow x^2-7x-2=2x-22$

$\Leftrightarrow x^2-9x+20=0$

$\Leftrightarrow (x-4)(x-5)=0$

$\Leftrightarrow x-4=0$ hoặc $x-5=0$

$\Leftrightarrow x=4$ hoặc $x=5$ (tm)

Bình luận (0)
MD
Xem chi tiết
H24
9 tháng 2 2023 lúc 21:13

\(5,\dfrac{4}{x-2}+\dfrac{x}{x+1}-\dfrac{x^2-2}{\left(x-2\right)\left(x+1\right)}=0\left(dkxd:x\ne2;-1\right)\)

\(\Rightarrow4\left(x+1\right)+x\left(x-2\right)-x^2-2=0\)

\(\Rightarrow4x+4+x^2-2x-x^2-2=0\)

\(\Rightarrow2x+2=0\)

\(\Rightarrow x=-1\left(loai\right)\)

Vậy \(S=\varnothing\)

Bình luận (1)
H24
9 tháng 2 2023 lúc 21:23

\(4,\dfrac{x}{x-3}-\dfrac{1}{x+2}=0\left(dkxd:x\ne3;-2\right)\)

\(\Rightarrow x\left(x+2\right)-\left(x-3\right)=0\)

\(\Rightarrow x^2+3x-x+3=0\)

\(\Rightarrow x^2+2x+3=0\)

\(\Rightarrow S=\varnothing\)

Bình luận (6)
MD
9 tháng 2 2023 lúc 21:50

giúp em tl những câu tl trên vs

Bình luận (0)
NK
Xem chi tiết
NT
25 tháng 8 2021 lúc 23:57

a: Ta có: \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=16\)

\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=16\)

\(\Leftrightarrow9x+7=16\)

\(\Leftrightarrow9x=9\)

hay x=1

 

Bình luận (0)
HK
Xem chi tiết
H24
27 tháng 7 2023 lúc 16:53

\(P=\left(\dfrac{3x^2+3x-3}{x^2+x-2}+\dfrac{1}{x-1}+\dfrac{1}{x+2}-2\right):\dfrac{1}{x^2-1}\left(dk:x\ne-2,x\ne\pm1\right)\)

\(=\left(\dfrac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}+\dfrac{1}{x-1}+\dfrac{1}{x+2}-2\right).\left(x^2-1\right)\)

\(=\left(\dfrac{3x^2+3x-3+x+2+x-1-2\left(x^2+x-2\right)}{\left(x-1\right)\left(x+2\right)}\right).\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{3x^2+5x-2-2x^2-2x+4}{x+2}.\left(x+1\right)\\ =\dfrac{x^2+3x+2}{x+2}.\left(x+1\right)\)

\(=\dfrac{x^2+x+2x+2}{x+2}.\left(x+1\right)\\ =\dfrac{x\left(x+1\right)+2\left(x+1\right)}{x+2}.\left(x+1\right)\\ =\dfrac{\left(x+1\right)^2\left(x+2\right)}{x+2}\\ =x^2+2x+1\)

Ta có :

 \(x^2-x-6=0\\ \Leftrightarrow x^2+2x-3x-6=0\\ \Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\)

Với \(x=3\) thì \(P=x^2+2x+1=\left(x+1\right)^2=\left(3+1\right)^2=16\)

Vậy ...

Bình luận (0)
HA
Xem chi tiết
MH
31 tháng 1 2021 lúc 10:14

1/ \(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\) (1)

Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\3x+4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-\dfrac{4}{3}\end{matrix}\right.\)

(1) \(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\\\Leftrightarrow12x^2+16x+21x+28=12x^2-12x+5x-5\\ \Leftrightarrow\left(16+21+12-5\right)x=-5-28\\ \Leftrightarrow44x=-33\\ \Leftrightarrow x=-\dfrac{3}{4}\) (Thỏa mãn)

Vậy \(x=-\dfrac{3}{4}\).

2/ \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\) (2)

Điều kiện: \(x\ne\pm1\)

(2)\(\Leftrightarrow\dfrac{x}{x-1}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x\left(x+1\right)-2x}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow x\left(x+1\right)-2x=0\\ \Leftrightarrow x^2+x-2x=0\\ \Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

So sánh với điều kiện \(\Rightarrow x=0\) là nghiệm của PT.

3/ \(\dfrac{1}{3-x}-\dfrac{14}{x^2-9}=1\) (3)

Điều kiện: \(x\ne\pm3\)

(3)\(\Leftrightarrow\dfrac{1}{3-x}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=1\\ \Leftrightarrow-\dfrac{\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\\ \Leftrightarrow-\left(x+3\right)-14=\left(x-3\right)\left(x+3\right)\\ \Leftrightarrow-x-17=x^2-9\Leftrightarrow x^2+x+8=0\) (Vô nghiệm do \(x^2+x+8>0\qquad\forall x\)).

Vậy PT vô nghiệm.

4/ \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\) (4)

Điều kiện: \(x\ne\pm1\)

(4)\(\Leftrightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\ \Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\ \Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow\left(x^2+2x+1\right)-\left(x^2-2x+1\right)=4\Leftrightarrow4x=4\Leftrightarrow x=1\) (loại)

Vậy PT vô nghiệm.

5/ \(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\) (5)

Điều kiện: \(x\ne0\)

(5)\(\Leftrightarrow x+\dfrac{1}{x}=\left(x+\dfrac{1}{x}\right)^2-2\)

Đặt \(t=x+\dfrac{1}{x}\), ta có: \(t=t^2-2\\ \Leftrightarrow t^2-t-2=0\Leftrightarrow\left(t-2\right)\left(t+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-1\end{matrix}\right.\)

Với \(t=2\) ta có: \(x+\dfrac{1}{x}=2\Leftrightarrow x^2+1=2x\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\) (thỏa mãn)

Với \(t=-1\) ta có: \(x+\dfrac{1}{x}=-1\Leftrightarrow x^2+1=-x\Leftrightarrow x^2+x+1=0\) (vô nghiệm).

Vậy \(x=1\) là nghiệm PT.

6/ \(\dfrac{x-1}{x^2+4}=\dfrac{x-1}{x+1}\) (6)

Điều kiện: \(x\ne-1\)

(6)\(\Leftrightarrow\dfrac{x-1}{x^2+4}-\dfrac{x-1}{x+1}=0\\ \Leftrightarrow\left(x-1\right)\left(\dfrac{1}{x^2+4}-\dfrac{1}{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{x^2+4}-\dfrac{1}{x+1}=0\end{matrix}\right.\)

\(x-1=0\Leftrightarrow x=1\) (Thỏa mãn)

\(\dfrac{1}{x^2+4}-\dfrac{1}{x+1}=0\Leftrightarrow\dfrac{1}{x^2+4}=\dfrac{1}{x+1}\Leftrightarrow x^2+4=x+1\\ \Leftrightarrow x^2-x+3=0\) (vô nghiệm).

Vậy \(x=1\) là nghiệm PT.

 

Bình luận (0)
NT
31 tháng 1 2021 lúc 10:49

1) ĐKXĐ: \(x\notin\left\{1;-\dfrac{4}{3}\right\}\)

Ta có: \(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\)

\(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)

\(\Leftrightarrow12x^2+16x+21x+28=12x^2+12x+5x-5\)

\(\Leftrightarrow12x^2+37x+28-12x^2-17x+5=0\)

\(\Leftrightarrow20x+33=0\)

\(\Leftrightarrow20x=-33\)

\(\Leftrightarrow x=-\dfrac{33}{20}\)(nhận)

Vậy: \(S=\left\{-\dfrac{33}{20}\right\}\)

2) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\)

Suy ra: \(x^2+x-2x=0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=1\left(loại\right)\end{matrix}\right.\)

Vậy: S={0}

3) ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

Ta có: \(\dfrac{1}{3-x}-\dfrac{14}{x^2-9}=1\)

\(\Leftrightarrow\dfrac{-1}{x-3}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=1\)

\(\Leftrightarrow\dfrac{-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

Suy ra: \(-x-3-14=x^2-9\)

\(\Leftrightarrow x^2-9=-x-17\)

\(\Leftrightarrow x^2-9+x+17=0\)

\(\Leftrightarrow x^2+x+8=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{31}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{31}{4}=0\)(vô lý)

Vậy: \(S=\varnothing\)

4) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)

\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)

Suy ra: \(x^2+2x+1-\left(x^2-2x+1\right)=4\)

\(\Leftrightarrow x^2+2x+1-x^2+2x-1=4\)

\(\Leftrightarrow4x=4\)

hay x=1(loại)

Vậy: \(S=\varnothing\)

5) ĐKXĐ: \(x\ne0\)

Ta có: \(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\)

\(\Leftrightarrow\dfrac{x^2+1}{x}=\dfrac{x^4+1}{x^2}\)

\(\Leftrightarrow x^2\left(x^2+1\right)=x\left(x^4+1\right)\)

\(\Leftrightarrow x^4+x^2=x^5+x\)

\(\Leftrightarrow x^5+x-x^4-x^2=0\)

\(\Leftrightarrow x\left(x^4-x^3-x+1\right)=0\)

\(\Leftrightarrow x\left[x^3\left(x-1\right)-\left(x-1\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x^3-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)^2\cdot\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\)

nên \(x\cdot\left(x-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x-1=0\end{matrix}\right.\Leftrightarrow x=1\)

Vậy: S={1}

6) ĐKXĐ: \(x\in R\)

Ta có: \(\dfrac{x-1}{x^2+4}=\dfrac{x-1}{x+1}\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x^2+4\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-\left(x-1\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1-x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-x^2+x-3\right)=0\)

\(\Leftrightarrow-\left(x-1\right)\left(x^2-x+3\right)=0\)

mà \(x^2-x+3>0\)

nên x-1=0

hay x=1(nhận)

Vậy: S={1}

Bình luận (0)
YJ
Xem chi tiết
MH
19 tháng 2 2022 lúc 9:22

c) \(\left(x-1\right)^2+2\left(1-x^2\right)=0\)

\(\left(x-1\right)^2-2\left(x-1\right)\left(x+1\right)=0\)

\(\left(x-1\right)\left(x-1-2x-2\right)=0\)

\(\left(x-1\right)\left(-x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

d) \(\dfrac{3x}{2\left(x-2\right)}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

\(\dfrac{3x^2-2\left(x-2\right)}{2x\left(x-2\right)}=\dfrac{4}{2x\left(x-2\right)}\left(đk:x\ne0;2\right)\)

\(3x^2-2x+4=4\)

\(x\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

Bình luận (0)
NT
19 tháng 2 2022 lúc 9:23

c, \(\left(x-1\right)\left(x+1\right)+2\left(1-x\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)+\left(2-2x\right)\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(-x+1\right)=0\Leftrightarrow x=-1;x=1\)

d, đk x khác 0 ; 2\(\Rightarrow3x^2-2\left(x-2\right)=4\Leftrightarrow3x^2-2x=0\Leftrightarrow x\left(3x-2\right)=0\Leftrightarrow x=0\left(ktm\right);x=\dfrac{2}{3}\)

Bình luận (0)
H24
19 tháng 2 2022 lúc 9:24

c.

\(\left(x-1\right)^2+2\left(1-x^2\right)=0\\ \Leftrightarrow x^2-2x+1+2-2x^2=0\\ \Leftrightarrow-x^2-2x+3=0\\ \Leftrightarrow x\left(-x-2+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

 

Bình luận (0)
TG
Xem chi tiết
H24
27 tháng 7 2023 lúc 17:07

Bạn xem lại \(a,b\) mình làm rồi nha.

\(c,P>0\Leftrightarrow\left(x+1\right)^2>0\) (luôn đúng \(\forall x\))

Vậy với mọi giá trị x thì \(P>0\).

Bình luận (0)
SP
Xem chi tiết
H24
19 tháng 1 2022 lúc 20:51

Câu 1:

\(\left(x-2\right)\left(x^2+2x+4\right)+25x=x\left(x+5\right)\left(x-5\right)+8\)

\(\Leftrightarrow x^3-8+25x=x\left(x^2-25\right)+8\)

\(\Leftrightarrow x^3-8+25x=x^3-25x+8\)

\(\Leftrightarrow x^3-8+25x-x^3+25x-8=0\)

\(\Leftrightarrow50x-16=0\)

\(\Leftrightarrow50x=16\)

\(\Leftrightarrow x=\dfrac{8}{25}\)

Bình luận (0)
H24
19 tháng 1 2022 lúc 21:21

Câu 2 :

\(\dfrac{x+5}{4}+\dfrac{3+2x}{3}=\dfrac{6x-1}{3}-\dfrac{1-2x}{12}\)

<=> \(\dfrac{3\left(x+5\right)}{12}+\dfrac{4\left(3+2x\right)}{12}=\dfrac{4\left(6x-1\right)}{12}-\dfrac{1-2x}{12}\)

<=>\(\dfrac{3x+15+12+8x}{12}=\dfrac{24x-4-1+2x}{12}\)

<=> 3x + 15 + 12 + 8x = 24x - 4 - 1 +2x

<=> 11x+27 = 26x -5

<=> ( 26x - 5 ) - ( 11x + 27 ) = 0

<=> 15x - 32 = 0

<=> 15x = 32

<=> x = \(\dfrac{32}{15}\)

Bình luận (0)
HD
19 tháng 1 2022 lúc 21:33

Câu 3:

x - 4/3 - 3x - 1/12 = 3x + 1/4 + 9x - 2/8

<=> 4x - 16 - 3x + 1/12 = 6x + 2 + 9x - 2/8

<=> x - 15/12 = 15x/8

<=> 8x - 120 = 180x

<=> 120 = -172x <=> x = -172/120 = -43/30

Bình luận (0)
HH
Xem chi tiết
KK
12 tháng 9 2021 lúc 19:28

2.

a. 3x(12x - 4) - 9x(4x - 3) = 30

<=> 36x2 - 12x - 36x2 + 27x = 30

<=> 36x2 - 36x2 - 12x + 27x = 30

<=> 15x = 30

<=> x = 2

b. x(5 - 2x) + 2x(x - 1) = 15

<=> 5x - 2x2 + 2x2 - 2x = 15

<=> -2x2 + 2x2 + 5x - 2x = 15

<=> 3x = 15

<=> x = 5

Bình luận (0)
PA
12 tháng 9 2021 lúc 19:30

a) x2 ( 5x3 - x - 2323x2y=  6969x3y2- 2323x4y+ 2323x2y2

c) x2 ( 4x3 - 5xy + 2x ) ( -

Bình luận (0)
TM
Xem chi tiết