Những câu hỏi liên quan
HM
Xem chi tiết
LG
Xem chi tiết
AH
22 tháng 6 2021 lúc 23:23

Lời giải:

a. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$

$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$

$\Leftrightarrow |\sqrt{x-4}+2|=2$

$\Leftrightarrow  \sqrt{x-4}+2=2$

$\Leftrightarrow \sqrt{x-4}=0$

$\Leftrightarrow x=4$ (tm)

b. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Rightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)

c.

PT \(\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x(x-1)=0\end{matrix}\right.\Rightarrow x=1\)

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
NL
28 tháng 2 2021 lúc 20:15

\(\Leftrightarrow2x^2+2+2\sqrt{\left(x^2+x+1\right)\left(x^2-x+1\right)}=2x^2+4\)

\(\Leftrightarrow\sqrt{x^4+x^2+1}=1\)

\(\Leftrightarrow x^4+x^2=0\)

\(\Leftrightarrow x=0\)

Bình luận (0)
H24
28 tháng 2 2021 lúc 20:16

`\sqrt{x^2+x+1}+\sqrt{x^2-x+1}=\sqrt{2x^2+4}`

`<=>2x^2+2+2\sqrt{x^4+x^2+1}=2x^2+3`

`<=>\sqrt{x^4+x^2+1}=1`

`<=>x^4+x^2=0`

`<=>x=0`

Bình luận (0)
NN
Xem chi tiết
NM
15 tháng 9 2021 lúc 14:16

\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)

\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)

\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)

Bình luận (0)
NN
Xem chi tiết
TT
4 tháng 3 2018 lúc 22:19

hello bạn

Bình luận (0)
BG
Xem chi tiết
CH
14 tháng 7 2021 lúc 17:30

Vì \(\sqrt{x^2-2x+4} \)≥ 0 ( đúng với ∀ x )
→ \(2x - 2\) ≥ 0 
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4} \) = \(2x - 2\)
\(x^2-2x+4 \) = \((2x - 2)^2\)
⇔ \(x^2-2x+4 \) = \(4x^2 - 8x + 4 \)
⇔ \(0 = 3x^2 - 6x \)
⇔ 0 = \(3x(x-1)\)
\(\begin{cases} x=0\\ x-1=0 \end{cases} \)
Mà x ≥ 1
Vậy x ∈ { 1}

Bình luận (0)
CH
14 tháng 7 2021 lúc 17:39

Xin lỗi mình lm sai chút :)))
Vì \(\sqrt{x^2-2x+4} \)≥ 0 ( đúng với ∀ x )
→ 2x − 2 ≥ 0 
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4} \) = 2x−2
⇔ \(x^2 - 2x + 4\)\((2x-2)^2\)
⇔ 0=\(3x^2 - 6x \)
⇔ 0 = 3x(x−2)
\(\left[\begin{array}{} x=0\\ x=2 \end{array} \right.\)
Mà x ≥ 1
→ x ∈ {2}

Bình luận (0)
NL
14 tháng 7 2021 lúc 17:41

a.

\(\Leftrightarrow\left\{{}\begin{matrix}2x-2\ge0\\x^2-2x+4=\left(2x-2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-2x+4=4x^2-8x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\3x^2-6x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x=2\)

Bình luận (1)
LG
Xem chi tiết
NT
30 tháng 8 2021 lúc 19:08

a: Ta có: \(\sqrt{1-x^2}=x-1\)

\(\Leftrightarrow1-x^2=x-1\)

\(\Leftrightarrow1-x^2-x+1=0\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

b: Ta có: \(\sqrt{x^2+4x+4}=x-2\)

\(\Leftrightarrow\left|x+2\right|=x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=x-2\left(x\ge-2\right)\\x+2=2-x\left(x< -2\right)\end{matrix}\right.\Leftrightarrow2x=0\)

hay x=0(loại)

 

Bình luận (0)
TC
Xem chi tiết
LM
Xem chi tiết