Những câu hỏi liên quan
HN
Xem chi tiết
HT
Xem chi tiết
NT
28 tháng 11 2019 lúc 18:08

Do a ≤ 1⇒a2 ≤1

(1−a2)(1−b) ≤0 ⇒1+a2b2 ≥ a2+b

0 ≤ a , b ≤ 1 ⇒a2≥ a3 ,b2≥ b3

⇒ 1+a2b2 ≥ a3 + b3

Tương tự rồi cộng lại ta có được điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
BL
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
NL
28 tháng 9 2019 lúc 0:45

\(0< a;b;c< 1\Rightarrow\left\{{}\begin{matrix}a^3< a^2< a< 1\\b^3< b^2< b< 1\\c^3< c^2< c< 1\end{matrix}\right.\)

\(\Rightarrow\left(1-a\right)\left(1-b^2\right)>0\Rightarrow1+ab^2>a+b^2>a^3+b^3\)

Tương tự: \(1+b^2c>b^3+c^3\); \(1+ca^2>a^3+c^3\)

Cộng vế với vế: \(3+a^2b+b^2c+c^2a>2a^3+2b^3+2c^3\)

Đẳng thức không xảy ra

Bình luận (2)
HN
Xem chi tiết
AH
25 tháng 5 2023 lúc 23:21

Dấu >= hay <= vậy bạn? Bạn xem lại đề.

Bình luận (1)
KN
Xem chi tiết
TL
25 tháng 7 2020 lúc 19:51

ta có a(1-b) \(\ge\)a2(1-b); b(1-c) \(\ge\)b2(1-c); c(1-a) \(\ge\)c2(1-a)

suy ra (a2+b2+c2)-(a2b+b2c+c2a) \(\le\)a(1-b)+b(1-c)+c(1-a)

=> (a2+b2+c2)-(a2b+b2c+c2a) \(\le\)(a+b+c)-(ab+bc+ca)

mà (1-a)(1-b)(1-c) +abc\(\ge\)0 => 1\(\ge\)(a+b+c)-(ab+bc+ca)

vậy a2+b2+c2 \(\le\)1+a2b+b2c+c2a

dấu đẳng thức xảy ra <=> trong 3 số có 1 số bằng 0 và 1 số bằng 1

Bình luận (0)
 Khách vãng lai đã xóa
KA
3 tháng 8 2020 lúc 20:51

Ta có: \(a.\left(1-b\right)\ge a^2.\left(1-b\right)\)

          \(b.\left(1-c\right)\ge b^2.\left(1-c\right)\)

          \(c.\left(1-a\right)\ge c^2.\left(1-a\right)\)

Suy ra \(\left(a^2+b^2+c^2\right)-\left(a^2b+b^2c+c^2a\right)\le a.\left(1-b\right)+b.\left(1-c\right)+c.\left(1-a\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)-\left(a^2b+b^2c+c^2a\right)\le\left(a+b+c\right)-\left(ab+bc+ca\right)\)

Mà \(\left(1-a\right).\left(1-b\right).\left(1-c\right)+abc\ge0\) \(\Rightarrow1\ge\left(a+b+c\right)-\left(ab+bc+ca\right)\)

Vậy \(a^2+b^2+c^2\le1+a^2b+b^2c+c^2a\)

Dấu dẳng thức xảy ra \(\Leftrightarrow\)trong ba số đó có một số bằng 0, một số bằng 1 

Bình luận (0)
 Khách vãng lai đã xóa
KA
25 tháng 7 2020 lúc 20:16

Trả lời:

Ta có: \(0\le a,b,c\le1\Rightarrow a.\left(1-a\right).\left(1-b\right)\ge0\)

                                       \(\Leftrightarrow a-ab-a^2+ab\ge0\)

                                       \(\Leftrightarrow a^2b\ge ab-a+a^2\)

Tương tự  \(b^2c\ge bc-b+b^2\)

                 \(c^2a\ge ca-c+c^2\)

\(\Rightarrow a^2b+b^2c+c^2a+1\ge1+ab+bc+ca-a-b-c+a^2+b^2+c^2\)

                                                  \(\ge\left(1-a\right).\left(1-b\right).\left(1-c\right)+abc+a^2+b^2+c^2\)

                                                  \(\ge a^2+b^2+c^2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(a,b,c\right)\in\left\{\left(0,1,1\right),\left(1,0,1\right),\left(1,1,0\right),\left(0,0,1\right),\left(0,1,0\right),\left(1,0,0\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AH
5 tháng 7 2019 lúc 17:36

Lời giải:
Vì $a,b,c\in [0;1]$ nên: \(a(a-1)(b-1)\geq 0\)

\(\Leftrightarrow a(ab-a-b+1)\geq 0\)

\(\Leftrightarrow a^2b\geq a^2+ab-a\)

Tương tự với \(b^2c; c^2a\) suy ra:

\(a^2b+b^2c+c^2a+1\geq a^2+b^2+c^2+ab+bc+ac+1-a-b-c(1)\)

Lại có:

\((a-1)(b-1)(c-1)\leq 0\)

\(\Leftrightarrow (ab-a-b+1)(c-1)\leq 0\)

\(\Leftrightarrow abc-(ab+bc+ac)+a+b+c-1\leq 0\)

\(\Leftrightarrow ab+bc+ac+1\geq a+b+c+abc\geq a+b+c(2)\) do $abc\geq 0$

Từ \((1);(2)\Rightarrow a^2b+b^2c+c^2a+1\geq a^2+b^2+c^2\) (đpcm)

Bình luận (0)
CA
Xem chi tiết