Những câu hỏi liên quan
MN
Xem chi tiết
NT
16 tháng 12 2021 lúc 19:49

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm

Bình luận (0)
HA
Xem chi tiết
NT
2 tháng 8 2021 lúc 20:11

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
ML
Xem chi tiết
GH
1 tháng 7 2023 lúc 7:51

Ta có:

\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{3^2}{4}=\dfrac{9}{4}\left(cm\right)\)

\(BC=BH+HC=4+\dfrac{9}{4}=9\left(cm\right)\)

\(AB=\sqrt{BH.BC}=\sqrt{4.9}=6\left(cm\right)\)

\(AC=\sqrt{CH.BC}=\sqrt{\dfrac{9}{4}.9}=\dfrac{9}{2}\left(cm\right)\)

Bình luận (0)
GH
1 tháng 7 2023 lúc 7:06

loading...

Bình luận (0)
NM
1 tháng 7 2023 lúc 7:14

A H B C

\(AH^2=BH.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích hai hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{3^2}{4}=2,25cm\)

\(BC=BH+HC=4+2,25=6,25cm\)

\(AB^2=BH.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giwac hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow AB=\sqrt{BH.BC}=\sqrt{4.6,25}=5cm\)

\(AC=\sqrt{BC^2-AB^2}\) (Pitago)

\(\Rightarrow AC=\sqrt{6,25^2-5^2}=3,75cm\)

Bình luận (0)
PV
Xem chi tiết
NT
26 tháng 9 2021 lúc 14:03

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
DM
Xem chi tiết
PB
Xem chi tiết
CT
1 tháng 7 2019 lúc 7:01

a, AB = 7,5cm, AC = 10cm, BC = 12,5cm, HC = 8cm

b, AH = 3 3 cm;  P A B C = 18 + 6 3 c m ;  P A B H = 9 + 3 3 c m ;  P A C H = 9 + 9 3 c m

Bình luận (0)
NT
Xem chi tiết
NT
13 tháng 7 2021 lúc 19:32

undefined

Bình luận (0)
VT
Xem chi tiết
XT
Xem chi tiết
NT
6 tháng 11 2021 lúc 23:40

a: \(AH=2\sqrt{6}\left(cm\right)\)

\(AB=2\sqrt{10}\left(cm\right)\)

\(AC=2\sqrt{15}\left(cm\right)\)

Bình luận (0)