Những câu hỏi liên quan
HT
Xem chi tiết
NT
11 tháng 12 2021 lúc 11:48

Dựng \(\overrightarrow{AB}=\overrightarrow{BD}\)

\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-3;-2\right)\)

\(\overrightarrow{BD}=\left(x_D-x_B;y_D-y_B\right)=\left(x_D-1;y_D-4\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D-1=-3\\y_D-4=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=-2\\y_D=2\end{matrix}\right.\)

\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\cos\left(\overrightarrow{BD};\overrightarrow{BC}\right)=\dfrac{-3\cdot6+\left(-2\right)\cdot\dfrac{-5}{2}}{\sqrt{\left(-3\right)^2+\left(-2\right)^2}\cdot\sqrt{6^2+\left(-\dfrac{5}{2}\right)^2}}\)

\(=\dfrac{\left(-18+5\right)}{\sqrt{13}\cdot\sqrt{\dfrac{13}{2}}}-\sqrt{2}\)

\(\Leftrightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=45^0\)

Bình luận (0)
NN
Xem chi tiết
HN
Xem chi tiết
NT
28 tháng 11 2022 lúc 23:06

\(cos\left(\overrightarrow{a},\overrightarrow{b}\right)=\dfrac{1\cdot\left(-1\right)+\left(-2\right)\cdot\left(-3\right)}{\sqrt{1^2+2^2}\cdot\sqrt{1^2+3^2}}=\dfrac{5}{\sqrt{5}\cdot\sqrt{10}}=\dfrac{5}{\sqrt{50}}=\dfrac{1}{\sqrt{2}}\)

 

Bình luận (0)
LT
Xem chi tiết
H24
Xem chi tiết
H24
30 tháng 1 2023 lúc 18:53

Giả sử `\vec{c}=m\vec{a}+n\vec{b}`

`<=>(3;-4)=m(2;0)+n(0;-3)`

`<=>(3;-4)=(2m;-3n)`

`<=>{(m=3/2),(n=4/3):}`

   `=>\vec{c}=3/2\vec{a}+4/3\vec{b}`

Bình luận (0)
TT
Xem chi tiết
NT
20 tháng 1 2023 lúc 0:32

(1); vecto u=2*vecto a-vecto b

=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)

(2): vecto u=-2*vecto a+vecto b

=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)

(3): vecto a=2*vecto u-5*vecto v

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)

(4): vecto OM=(x;y)

2 vecto OA-5 vecto OB=(-18;37)

=>x=-18; y=37

=>x+y=19

Bình luận (0)
PD
Xem chi tiết
NL
3 tháng 10 2019 lúc 22:08

\(m\overrightarrow{a}=m\left(-1;-2\right)=\left(-m;-2m\right)\)

\(n\overrightarrow{b}=n\left(1;-3\right)=\left(n;-3n\right)\)

\(\Rightarrow m\overrightarrow{a}+n\overrightarrow{b}=\left(-m+n;-2m-3n\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-m+n=2\\-2m-3n=-4\end{matrix}\right.\) \(\Rightarrow m-n=-2\) (đảo dấu pt đầu là ra, ko cần giải hẳn ra m; n)

Bình luận (0)
PC
Xem chi tiết
AH
30 tháng 1 2020 lúc 20:15

Lời giải:
Gọi \(\overrightarrow{d}=(x,y)\). Theo bài ra ta có:

\(\left\{\begin{matrix} \overrightarrow{a}.\overrightarrow{d}=4\\ \overrightarrow{b}.\overrightarrow{d}=-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2x+3y=4\\ 4x+y=-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{-5}{7}\\ y=\frac{6}{7}\end{matrix}\right.\)

Vậy.......

Bình luận (0)
 Khách vãng lai đã xóa
QL
Xem chi tiết
HM
28 tháng 9 2023 lúc 23:38

a) Vì \(\overrightarrow v  = \left( {0; - 7} \right)\)nên \(\overrightarrow v  = 0\overrightarrow i  + \left( { - 7} \right)\overrightarrow j  =  - 7\overrightarrow j \)

b) Vì B có tọa  độ là (-1; 0) nên \(\overrightarrow {OB}  = \left( { - 1;{\rm{ }}0} \right)\). Do đó: \(\overrightarrow {OB}  = \left( { - 1} \right)\overrightarrow i  + 0\overrightarrow j  =  - \overrightarrow i \)

Bình luận (0)