Những câu hỏi liên quan
H24
Xem chi tiết
HN
17 tháng 9 2016 lúc 16:40

ĐKXĐ : \(1\le x\le3\)

\(x-\sqrt{x-1}-3=0\)

\(\Leftrightarrow\left(x-1\right)-\sqrt{x-1}-2=0\)

Đặt \(t=\sqrt{x-1},t\ge0\), suy ra pt trên trở thành \(t^2-t-2=0\Leftrightarrow\left(t-2\right)\left(t+1\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\left(\text{nhận}\right)\\t=-1\left(\text{loại}\right)\end{cases}}\)

Với t = 2 suy ra x = 5

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 5 2018 lúc 8:36

3.(x2 + x)2 – 2(x2 + x) – 1 = 0 (1)

Đặt t = x2 + x,

Khi đó (1) trở thành : 3t2 – 2t – 1 = 0 (2)

Giải (2) : Có a = 3 ; b = -2 ; c = -1

⇒ a + b + c = 0

⇒ (2) có hai nghiệm t1 = 1; t2 = c/a = -1/3.

+ Với t = 1 ⇒ x2 + x = 1 ⇔ x2 + x – 1 = 0 (*)

Có a = 1; b = 1; c = -1 ⇒ Δ = 12 – 4.1.(-1) = 5 > 0

(*) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Có a = 3; b = 3; c = 1 ⇒ Δ = 32 – 4.3.1 = -3 < 0

⇒ (**) vô nghiệm.

Vậy phương trình (1) có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Bình luận (0)
KS
Xem chi tiết
AH
30 tháng 10 2020 lúc 20:14

Lời giải:

ĐK: $x\geq 0$

Đặt $\sqrt{x+1}=a; \sqrt{x}=b$. ĐK $a,b\geq 0$ thì ta có:

$a-b-ab=a^2-2b^2$

$\Leftrightarrow a-b=a^2+ab-2b^2=(a-b)(a+2b)$

$\Leftrightarrow (a-b)(a+2b-1)=0$

$\Leftrightarrow a=b$ hoặc $a+2b=1$

Nếu $a=b\Rightarrow a^2=b^2\Leftrightarrow x+1=x$ (vô lý)

Nếu $a+2b=1$

$\Leftrightarrow \sqrt{x+1}-1+2\sqrt{x}=0$

$\Leftrightarrow \frac{x}{\sqrt{x+1}+1}+2\sqrt{x}=0$

$\Leftrightarrow \sqrt{x}(\frac{\sqrt{x}}{\sqrt{x+1}+1}+2)=0$

Dễ thấy biểu thức trong ngoặc lớn hơn $0$ nên \sqrt{x}=0$

$\Leftrightarrow x=0$

Vậy.......

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NT
15 tháng 4 2022 lúc 9:24

Đặt \(\dfrac{x}{\sqrt{4x-1}}=a\)

Theo đề, ta có phương trình:

a+1/a=2

\(\Leftrightarrow a+\dfrac{1}{a}=2\)

\(\Leftrightarrow\dfrac{a^2+1-2a}{a}=0\)

=>a=1

=>\(x=\sqrt{4x-1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4x-1\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=3\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)

Bình luận (0)
ND
Xem chi tiết
OP
21 tháng 1 2022 lúc 13:30

đặt 1/2x-y là a

1/x+y là b

hpt ta đc:

3.a-6.b=1

a-b=0

( giải đi pạn)

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 11 2019 lúc 7:45

a)

3 · x 2 + x 2 - 2 x 2 + x - 1 = 0 ( 1 )

Đặt  t   =   x 2   +   x ,

Khi đó (1) trở thành :  3 t 2   –   2 t   –   1   =   0   ( 2 )

Giải (2) : Có a = 3 ; b = -2 ; c = -1

⇒ a + b + c = 0

⇒ (2) có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   - 1 / 3 .

+ Với t = 1  ⇒   x 2   +   x   =   1   ⇔   x 2   +   x   –   1   =   0   ( * )

Có a = 1; b = 1; c = -1  ⇒   Δ   =   1 2   –   4 . 1 . ( - 1 )   =   5   >   0

(*) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Có a = 3; b = 3; c = 1 ⇒   Δ   =   3 2   –   4 . 3 . 1   =   - 3   <   0

⇒ (**) vô nghiệm.

Vậy phương trình (1) có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

x 2 − 4 x + 2 2 + x 2 − 4 x − 4 = 0 ⇔ x 2 − 4 x + 2 2 + x 2 − 4 x + 2 − 6 = 0 ( 1 )

Đặt  x 2   –   4 x   +   2   =   t ,

Khi đó (1) trở thành:   t 2   +   t   –   6   =   0   ( 2 )

Giải (2): Có a = 1; b = 1; c = -6

⇒  Δ   =   1 2   –   4 . 1 . ( - 6 )   =   25   >   0

⇒ (2) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Với t = 2  ⇒   x 2   –   4 x   +   2   =   2

⇔   x 2   –   4 x   =   0

⇔ x(x – 4) = 0

⇔ x = 0 hoặc x = 4.

+ Với t = -3  ⇒   x 2   –   4 x   +   2   =   - 3

⇔ x2 – 4x + 5 = 0 (*)

Có a = 1; b = -4; c = 5  ⇒   Δ ’   =   ( - 2 ) 2   –   1 . 5   =   - 1   <   0

⇒ (*) vô nghiệm.

Vậy phương trình ban đầu có tập nghiệm S = {0; 4}.

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó (1) trở thành:  t 2   –   6 t   –   7   =   0   ( 2 )

Giải (2): Có a = 1; b = -6; c = -7

⇒ a – b + c = 0

⇒ (2) có nghiệm  t 1   =   - 1 ;   t 2   =   - c / a   =   7 .

Đối chiếu điều kiện chỉ có nghiệm t = 7 thỏa mãn.

+ Với t = 7 ⇒ √x = 7 ⇔ x = 49 (thỏa mãn).

Vậy phương trình đã cho có nghiệm x = 49.

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔   t 2   –   10   =   3 t   ⇔   t 2   –   3 t   –   10   =   0   ( 2 )

Giải (2): Có a = 1; b = -3; c = -10

⇒   Δ   =   ( - 3 ) 2   -   4 . 1 . ( - 10 )   =   49   >   0

⇒ (2) có hai nghiệm:

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai nghiệm đều thỏa mãn điều kiện xác định.

Vậy phương trình đã cho có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Bình luận (0)
H24
Xem chi tiết
LC
5 tháng 8 2021 lúc 1:07

\(x^2+6x-3=4x\sqrt{2x-1}\left(1\right)\)      ĐK: \(x\ge\frac{1}{2}\)

Đặt \(\sqrt{2x-1}=a\ge0\)

\(\Rightarrow6x-3=3a^2\)

=> (1) <=> x^2 +3a^2 = 4ax

<=> x^2 -4ax +3a^2 =0

<=> x^2 -ax - 3ax +  3a^2 =0

<=> x(x-a) -3a(x-a) =0

<=> (x-a) ( x-3a ) =0

\(\Leftrightarrow\orbr{\begin{cases}x=a\\x=3a\end{cases}}\)

TH1: x=a

\(\Rightarrow x=\sqrt{2x-1}\)\(\left(x\ge0\right)\)

\(\Leftrightarrow x^2=2x-1\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

<=> x=1 (tm)

TH2: x= 3a

\(\Rightarrow x=3\sqrt{2x-1}\left(x\ge0\right)\)

\(\Leftrightarrow x^2=18x-9\)

\(\Leftrightarrow x^2-18x+9=0\)

\(\Delta=288\)

=> pt có 2 nghiệm pb \(\orbr{\begin{cases}x=\frac{18+12\sqrt{2}}{2}=9+6\sqrt{2}\left(tm\right)\\x=\frac{18-12\sqrt{2}}{2}=9-6\sqrt{2}\left(tm\right)\end{cases}}\)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
PS
Xem chi tiết
GL
22 tháng 6 2019 lúc 23:23

ĐK  \(x\ge0\)

Đặt \(x=a,x+1=b\)

\(PT\Leftrightarrow a^4+b^4=\left(a+b\right)^4\)

<=> 4a3b+6a2b2+4ab3=0

<=> ab(2a2+3ab+2b2)=0

=>ab=0 (vì 2a2+3ab+2b2>0)

=>\(\orbr{\begin{cases}a=0\\b=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy.............................

Bình luận (0)
DA
Xem chi tiết
H24
13 tháng 7 2017 lúc 9:50

ĐKXĐ: \(x\ge\dfrac{3}{4}\)

\(\Leftrightarrow\sqrt{5x^2+5x}=\sqrt{8x^2+10x-12}\) (1)

\(\Leftrightarrow\left(\sqrt{5x^2+5x}\right)^2=\left(\sqrt{8x^2+10x-12}\right)^2\)

\(\Leftrightarrow5x^2+5x=8x^2+10x-12\)

\(\Leftrightarrow5x^2+5x-\left(8x^2+10x-12\right)=8x^2+10x-12-\left(8x^2+10x-12\right)\)

\(\Leftrightarrow-3x^2-5x+12=0\)

\(\Leftrightarrow\left(-3x+4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x+4=0\\x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x=-4\\x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\left(OK\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{4}{3}\right\}\)

Bình luận (0)