Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Chương 1: MỆNH ĐỀ, TẬP HỢP

LP

Giải pt bằng cách đặt 1 ẩn phụ

x2+\(\sqrt{x+1}=1\)

NL
23 tháng 11 2018 lúc 23:44

ĐKXĐ: \(x\ge-1\)

\(x^2-1+\sqrt{x+1}=0\Rightarrow\left(x-1\right)\left(x+1\right)+\sqrt{x+1}=0\)

\(\Rightarrow\left(x+1-2\right)\left(x+1\right)+\sqrt{x+1}=0\)

Đặt \(\sqrt{x+1}=t\ge0\Rightarrow x+1=t^2\) ta được:

\(\left(t^2-2\right)t^2+t=0\Rightarrow t\left(\left(t^2-2\right)t+1\right)=0\)

\(\Rightarrow t\left(t^3-2t+1\right)=0\Rightarrow t\left(t-1\right)\left(t^2+t-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=0\\t-1=0\\t^2+t-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}t=0\\t=1\\t=\dfrac{-1+\sqrt{5}}{2}\\t=\dfrac{-1-\sqrt{5}}{2}< 0\left(l\right)\end{matrix}\right.\)

TH1: \(t=0\Rightarrow\sqrt{x+1}=0\Rightarrow x=-1\)

TH2: \(t=1\Rightarrow\sqrt{x+1}=1\Rightarrow x+1=1\Rightarrow x=0\)

TH3: \(t=\dfrac{-1+\sqrt{5}}{2}\Rightarrow\sqrt{x+1}=\dfrac{-1+\sqrt{5}}{2}\Rightarrow x+1=\dfrac{3-\sqrt{5}}{2}\)

\(\Rightarrow x=\dfrac{3-\sqrt{5}}{2}-1=\dfrac{1-\sqrt{5}}{2}\)

Vậy pt có 3 nghiệm \(\left[{}\begin{matrix}x=-1\\x=0\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)

Bình luận (0)
AH
25 tháng 11 2018 lúc 13:32

Lời giải:

Đặt \(\sqrt{x+1}=a\Rightarrow 1=a^2-x\)

PT trở thành: \(x^2+a=a^2-x\)

\(\Leftrightarrow x^2-a^2+(a+x)=0\)

\(\Leftrightarrow (x+a)(x-a+1)=0\Rightarrow \left[\begin{matrix} x=-a\\ x+1=a\end{matrix}\right.\)

Nếu \(x=-a=-\sqrt{x+1}\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=x+1\end{matrix}\right.\Rightarrow x=\frac{1+\sqrt{5}}{2}\)

Nếu \(x+1=a=\sqrt{x+1}\Rightarrow (x+1)^2=(x+1)\Rightarrow x(x+1)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ x=-1\end{matrix}\right.\) (đều thỏa mãn)

Vậy.........

Bình luận (0)

Các câu hỏi tương tự
LP
Xem chi tiết
LP
Xem chi tiết
BN
Xem chi tiết
LP
Xem chi tiết
BN
Xem chi tiết
BN
Xem chi tiết
BN
Xem chi tiết
BN
Xem chi tiết
BN
Xem chi tiết